934 resultados para diff, diffing, differenza, documento, XML, multigrafo, infinito
Resumo:
This report explains the objectives, datasets and evaluation criteria of both the clustering and classification tasks set in the INEX 2009 XML Mining track. The report also describes the approaches and results obtained by the different participants.
Resumo:
A hierarchical structure is used to represent the content of the semi-structured documents such as XML and XHTML. The traditional Vector Space Model (VSM) is not sufficient to represent both the structure and the content of such web documents. Hence in this paper, we introduce a novel method of representing the XML documents in Tensor Space Model (TSM) and then utilize it for clustering. Empirical analysis shows that the proposed method is scalable for a real-life dataset as well as the factorized matrices produced from the proposed method helps to improve the quality of clusters due to the enriched document representation with both the structure and the content information.
Resumo:
This paper presents an overview of the experiments conducted using Hybrid Clustering of XML documents using Constraints (HCXC) method for the clustering task in the INEX 2009 XML Mining track. This technique utilises frequent subtrees generated from the structure to extract the content for clustering the XML documents. It also presents the experimental study using several data representations such as the structure-only, content-only and using both the structure and the content of XML documents for the purpose of clustering them. Unlike previous years, this year the XML documents were marked up using the Wiki tags and contains categories derived by using the YAGO ontology. This paper also presents the results of studying the effect of these tags on XML clustering using the HCXC method.
Resumo:
The XML Document Mining track was launched for exploring two main ideas: (1) identifying key problems and new challenges of the emerging field of mining semi-structured documents, and (2) studying and assessing the potential of Machine Learning (ML) techniques for dealing with generic ML tasks in the structured domain, i.e., classification and clustering of semi-structured documents. This track has run for six editions during INEX 2005, 2006, 2007, 2008, 2009 and 2010. The first five editions have been summarized in previous editions and we focus here on the 2010 edition. INEX 2010 included two tasks in the XML Mining track: (1) unsupervised clustering task and (2) semi-supervised classification task where documents are organized in a graph. The clustering task requires the participants to group the documents into clusters without any knowledge of category labels using an unsupervised learning algorithm. On the other hand, the classification task requires the participants to label the documents in the dataset into known categories using a supervised learning algorithm and a training set. This report gives the details of clustering and classification tasks.
Resumo:
The traditional Vector Space Model (VSM) is not able to represent both the structure and the content of XML documents. This paper introduces a novel method of representing XML documents in a Tensor Space Model (TSM) and then utilizing it for clustering. Empirical analysis shows that the proposed method is scalable for large-sized datasets; as well, the factorized matrices produced from the proposed method help to improve the quality of clusters through the enriched document representation of both structure and content information.
Resumo:
With the increasing number of XML documents in varied domains, it has become essential to identify ways of finding interesting information from these documents. Data mining techniques were used to derive this interesting information. Mining on XML documents is impacted by its model due to the semi-structured nature of these documents. Hence, in this chapter we present an overview of the various models of XML documents, how these models were used for mining and some of the issues and challenges in these models. In addition, this chapter also provides some insights into the future models of XML documents for effectively capturing the two important features namely structure and content of XML documents for mining.
Resumo:
In the last few years we have observed a proliferation of approaches for clustering XML docu- ments and schemas based on their structure and content. The presence of such a huge amount of approaches is due to the different applications requiring the XML data to be clustered. These applications need data in the form of similar contents, tags, paths, structures and semantics. In this paper, we first outline the application contexts in which clustering is useful, then we survey approaches so far proposed relying on the abstract representation of data (instances or schema), on the identified similarity measure, and on the clustering algorithm. This presentation leads to draw a taxonomy in which the current approaches can be classified and compared. We aim at introducing an integrated view that is useful when comparing XML data clustering approaches, when developing a new clustering algorithm, and when implementing an XML clustering compo- nent. Finally, the paper moves into the description of future trends and research issues that still need to be faced.
Resumo:
With the growing number of XML documents on theWeb it becomes essential to effectively organise these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. However, many issues arise in discovering knowledge from these types of semi-structured documents due to their heterogeneity and structural irregularity. Most of the existing research on clustering techniques focuses only on one feature of the XML documents, this being either their structure or their content due to scalability and complexity problems. The knowledge gained in the form of clusters based on the structure or the content is not suitable for reallife datasets. It therefore becomes essential to include both the structure and content of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both these kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. The overall objective of this thesis is to address these issues by: (1) proposing methods to utilise frequent pattern mining techniques to reduce the dimension; (2) developing models to effectively combine the structure and content of XML documents; and (3) utilising the proposed models in clustering. This research first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. A clustering framework with two types of models, implicit and explicit, is developed. The implicit model uses a Vector Space Model (VSM) to combine the structure and the content information. The explicit model uses a higher order model, namely a 3- order Tensor Space Model (TSM), to explicitly combine the structure and the content information. This thesis also proposes a novel incremental technique to decompose largesized tensor models to utilise the decomposed solution for clustering the XML documents. The proposed framework and its components were extensively evaluated on several real-life datasets exhibiting extreme characteristics to understand the usefulness of the proposed framework in real-life situations. Additionally, this research evaluates the outcome of the clustering process on the collection selection problem in the information retrieval on the Wikipedia dataset. The experimental results demonstrate that the proposed frequent pattern mining and clustering methods outperform the related state-of-the-art approaches. In particular, the proposed framework of utilising frequent structures for constraining the content shows an improvement in accuracy over content-only and structure-only clustering results. The scalability evaluation experiments conducted on large scaled datasets clearly show the strengths of the proposed methods over state-of-the-art methods. In particular, this thesis work contributes to effectively combining the structure and the content of XML documents for clustering, in order to improve the accuracy of the clustering solution. In addition, it also contributes by addressing the research gaps in frequent pattern mining to generate efficient and concise frequent subtrees with various node relationships that could be used in clustering.
Resumo:
The continuous growth of the XML data poses a great concern in the area of XML data management. The need for processing large amounts of XML data brings complications to many applications, such as information retrieval, data integration and many others. One way of simplifying this problem is to break the massive amount of data into smaller groups by application of clustering techniques. However, XML clustering is an intricate task that may involve the processing of both the structure and the content of XML data in order to identify similar XML data. This research presents four clustering methods, two methods utilizing the structure of XML documents and the other two utilizing both the structure and the content. The two structural clustering methods have different data models. One is based on a path model and other is based on a tree model. These methods employ rigid similarity measures which aim to identifying corresponding elements between documents with different or similar underlying structure. The two clustering methods that utilize both the structural and content information vary in terms of how the structure and content similarity are combined. One clustering method calculates the document similarity by using a linear weighting combination strategy of structure and content similarities. The content similarity in this clustering method is based on a semantic kernel. The other method calculates the distance between documents by a non-linear combination of the structure and content of XML documents using a semantic kernel. Empirical analysis shows that the structure-only clustering method based on the tree model is more scalable than the structure-only clustering method based on the path model as the tree similarity measure for the tree model does not need to visit the parents of an element many times. Experimental results also show that the clustering methods perform better with the inclusion of the content information on most test document collections. To further the research, the structural clustering method based on tree model is extended and employed in XML transformation. The results from the experiments show that the proposed transformation process is faster than the traditional transformation system that translates and converts the source XML documents sequentially. Also, the schema matching process of XML transformation produces a better matching result in a shorter time.
Resumo:
The complex supply chain relations of the construction industry, coupled with the substantial amount of information to be shared on a regular basis between the parties involved, make the traditional paper-based data interchange methods inefficient, error prone and expensive. The successful information technology (IT) applications that enable seamless data interchange, such as the Electronic Data Interchange (EDI) systems, have generally failed to be successfully implemented in the construction industry. An alternative emerging technology, Extensible Markup Language (XML), and its applicability to streamline business processes and to improve data interchange methods within the construction industry are analysed, as is the EDI technology to identify the strategic advantages that XML technology provides to overcome the barriers to implementation. In addition, the successful implementation of XML-based automated data interchange platforms for a large organization, and the proposed benefits thereof, are presented as a case study.
Resumo:
An investigation of the construction data management needs of the Florida Department of Transportation (FDOT) with regard to XML standards including development of data dictionary and data mapping. The review of existing XML schemas indicated the need for development of specific XML schemas. XML schemas were developed for all FDOT construction data management processes. Additionally, data entry, approval and data retrieval applications were developed for payroll compliance reporting and pile quantity payment development.
Resumo:
In recent years, XML has been widely adopted as a universal format for structured data. A variety of XML-based systems have emerged, most prominently SOAP for Web services, XMPP for instant messaging, and RSS and Atom for content syndication. This popularity is helped by the excellent support for XML processing in many programming languages and by the variety of XML-based technologies for more complex needs of applications. Concurrently with this rise of XML, there has also been a qualitative expansion of the Internet's scope. Namely, mobile devices are becoming capable enough to be full-fledged members of various distributed systems. Such devices are battery-powered, their network connections are based on wireless technologies, and their processing capabilities are typically much lower than those of stationary computers. This dissertation presents work performed to try to reconcile these two developments. XML as a highly redundant text-based format is not obviously suitable for mobile devices that need to avoid extraneous processing and communication. Furthermore, the protocols and systems commonly used in XML messaging are often designed for fixed networks and may make assumptions that do not hold in wireless environments. This work identifies four areas of improvement in XML messaging systems: the programming interfaces to the system itself and to XML processing, the serialization format used for the messages, and the protocol used to transmit the messages. We show a complete system that improves the overall performance of XML messaging through consideration of these areas. The work is centered on actually implementing the proposals in a form usable on real mobile devices. The experimentation is performed on actual devices and real networks using the messaging system implemented as a part of this work. The experimentation is extensive and, due to using several different devices, also provides a glimpse of what the performance of these systems may look like in the future.