185 resultados para diclofenac
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim. Diclofenac sodium is a non-steroidal anti-inflammatory drug commonly used to attenuate painful inflammatory reactions in surgery. However, it may delay healing in the skin and gastrointestinal tract. The aim of this study was to evaluate the influence of Diclofenac in vascular healing. Methods. Ninety rabbits had their carotid arteries sectioned and reconstructed by end-to-end anastomosis with interrupted sutures. The animals were randomly allocated into 3 groups of 30 each and treated by intramuscular route with saline (control), 5 mg/kg/day of diclofenac sodium (DS-5), and 10 mg/kg/day of diclofenac sodium (DS-10). Treatment began on the day of surgery and lasted 4 days. Angiography, biomechanical properties (failure load, failure elongation, yield point, yield point elongation, and stiffness were obtained from the load/elongation curve), macroscopic and histological examinations (hematoxylin-eosin, Masson, Calleja, Picrossirius-red), and scanning electron microscopy were studied in both arteries on the 3rd and 15th postoperative days. Results. No significant differences in biomechanical properties were observed either in the 3 groups or the experimental times. The carotid artery healing process was similar in the 3 groups. Conclusion. Diclofenac sodium did not cause alterations nor delayed carotid artery healing.
Resumo:
The objective of the present study was the development and characterization of ethylcellulose microspheres containing diclofenac and the determination of the in vitro drug release profile. Microspheres were prepared by emulsification/solvent evaporation method using ethyl acetate as solvent for the polymer and water as non solvent. The microspheres were characterized by morphologic and granulometric analyses. The amount of encapsulated drug as well as its release profile in vitro were also determined. The product obtained was microparticles with smooth surface and narrow size distribution, about 50% of the particles being smaller than 5 μm. The methodology used allowed drug encapsulation with a good yield and the system provided a controlled release of diclofenac.
Resumo:
This work has evaluated the hematological and biochemical profile by the use of sodium diclofenac, meloxicam and firocoxib in Wistar rats. The rats were distributed in groups: G1 (control), G2 (diclofenac sodium: 15 mg/kg), G3 (meloxicam: 2.0 mg/ kg), G4 (meloxicam: 10.0 mg/ kg), G5 (firocoxib: 5.0 mg/ kg) e G6 (firocoxib: 25.0 mg/ kg). The drugs were administered intragastrically (gavage) once a day, during five days and evaluated in three moments: M1 (48 hours after the beginning of the treatment), M2 (96 hours after the beginning of the treatment) and M3 (72 hours after the ending of the treatment). In each moment of each group, five to seven animals were evaluated and laboratory exams were performed. There were no significant changes observed in the biochemical and hematological parameters by the use of meloxicam and firocoxib. One of the effects of the sodium diclofenac was eritrogram variation as hematocrit, erythrocytes, hemoglobin decrease during the treatment. In addition, the platelets and total white blood cells counts did not change except for basophil. There was no changes in AST, ALP, GGT, urea, creatinine, sodium, potassium values. However, the values of protein, globulin and albumin decreased. It was concluded that diclofenac sodium does not provide large variations in the hemogram and biochemical profile than the meloxicam and firocoxib do not provide delletery effects in laboratories tests.
Resumo:
Polymers blends represent an important approach to obtain materials with modulated properties to reach different and desired properties in designing drug delivery systems in order to fulfill therapeutic needs. The aim of this work was to evaluate the influence of drug loading and polymer ratio on the physicochemical properties of microparticles of cross-linked high amylose starch-pectin blends loaded with diclofenac for further application in controlled drug delivery systems. Thermal analysis and X-ray diffractograms evidenced the occurrence of drug-polymer interactions and the former pointed also to an increase in thermal stability due to drug loading. The rheological properties demonstrated that drug loading resulted in formation of weaker gels while the increase of pectin ratio contributes to origin stronger structures. © 2012 Elsevier Ltd.
Resumo:
Meglumine is an aminocarbohydrate able to form supramolecular adducts with organic acids. The recognition is based on hydrogen bonds and the structures resulting from the complexation have high solubility in water. This property has been exploited by the pharmaceutical industry in the improvement of existing drugs, and the successful example of this approach involves the poorly soluble non-steroidal anti-inflammatory drugs (NSAIDs). Investigation of the thermal behavior of adduct obtained from meglumine and the NSAID diclofenac revealed that a polymer-like material is formed from the self-assembly of diclofenac-meglumine adducts in the melt. This polymer showed a high molecular weight around 2.0×105kDa. The kinetic parameters for the thermal decomposition step of the polymer were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and heating rates of 5, 10, 15 and 20°Cmin-1, the Eα and Bα terms could be determined, and consequently the pre-exponential factor, Aα, as well as the kinetic model, g(α). © 2012 Elsevier B.V.
Resumo:
Gastrotoxicity is a major problem for long-term therapy with non-steroidal anti-inflammatory drugs (NSAIDs). DICCIC (1-(2,6-dichlorophenyl)indolin-2-one) is a new diclofenac prodrug, which has proven anti-inflammatory activity without gastroulcerogenic effect. The aim of this work was to compare the pharmacokinetic profiles of diclofenac from DICCIC (7.6 mg/kg equivalent to 8.1 mg/kg diclofenac) and diclofenac (8.1 mg/kg) administration in Wistar rats weighing 250-300 g (n=20). The doses were calculated by interspecific allometric scaling based on the 2 mg/kg from diary human dose of diclofenac. Blood samples were collected in heparinized tubes via the femoral artery through the implanted catheter. The plasma was separated and quantitation was made in a HPLC system with a UV-Vis detector. The confidence limits of the bioanalytical method were appropriate for its application in a preclinical pharmacokinetic study. The AUC of diclofenac from DICCIC (53.7± 5.8 ug/mL.min) was significantly less (Mann Whitney test, p<0.05) than that of diclofenac from diclofenac administration (885.9 ± 124,8 ug/mL.min). Terminal half-life of diclofenac from DICCIC (50.1 ± 17.2 min) was significantly less (Mann Whitney test, p<0.05) than that of diclofenac from diclofenac administration (247.4 ± 100.9 min). Still the parameters clearance and distribution volume were calculated for diclofenac from diclofenac, whose results were 9.2 ±1.2 mL/min.kg and 3.3 ±1.2 L/kg, respectively. The results of DICCIC from DICCIC administration were 108.9 ± 19.6 mL/min.kg and 7.8 ± 2.4 L/kg for clearance and distribution volume, respectively. The pharmacokinetic profile demonstrated that there was an increase in diclofenac elimination and a lower exposure to diclofenac with administration of DICCIC compared to diclofenac. © 2013 Bentham Science Publishers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dehydration, thermal decomposition and transition phase stage of Zn(II)-diclofenac compoundwere studied by simultaneous TG-DTA and DSC techniques. The TG and DSC curves of this compoundwere obtained with the mass of sample of 2 and 5 mg. Additionally, DSC curves were carried out inopened and closed a-alumina pans under static and nitrogen atmosphere. The DTA and DSC curves showthat this compound possesses exothermic transition phase between 170-180 ºC, which it is irreversible(monotropic reaction). The kinetics study of this transition phase stage was evaluated by DSC undernon-isothermal conditions. The obtained data were evaluated with the isoconversional method, where thevalues of activation energy (Ea/kJmol-1) was plotted in function of the conversion degree (a). The resultsshow that due to mass sample, different activation energies were obtained. From these curves a tendencycan be seen where the plots maintain the same profile for closed lids and almost run parallel to each other.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diclofenac sodium (DS) is a non-steroidal anti-inflammatory drug that is widely prescribed for the treatment of rheumatoid arthritis and post-surgery analgesia. The active pharmaceutical ingredient is the anhydrous form; however, it can also exist in hydrate form. In this context, knowing the properties of the solid state is important and relevant in the pharmaceutical area because they have a significant impact on the solubility, bioavailability, and chemical stability of the drugs. In the present study, data from XRPD, FTIR spectroscopy, and thermal analysis were used for the identification and characterization of DS forms (anhydrous and hydrate). An HPLC method was optimized to evaluate the plasma concentration of DS in rabbits. The optimized method exhibited good linearity over the range 0.1-60 mu g/mL with correlation coefficients of >0.9991. The mean recovery was 100%. Precision and accuracy were determined within acceptable limits. Finally, to compare the pharmacological properties of anhydrous and hydrate DS forms, we investigated their effects in the febrile response induced by lipopolysaccharide from E. coli in rabbits. The results show that the antipyretic effect of anhydrous and hydrate DS forms are similar.
Resumo:
While the pathology peer review/pathology working group (PWG) model has long been used in mammalian toxicologic pathology to ensure the accuracy, consistency, and objectivity of histopathology data, application of this paradigm to ecotoxicological studies has thus far been limited. In the current project, the PWG approach was used to evaluate histopathologic sections of gills, liver, kidney, and/or intestines from three previously published studies of diclofenac in trout, among which there was substantial variation in the reported histopathologic findings. The main objectives of this review process were to investigate and potentially reconcile these interstudy differences, and based on the results, to establish an appropriate no observed effect concentration (NOEC). Following a complete examination of all histologic sections and original diagnoses by a single experienced fish pathologist (pathology peer review), a two-day PWG session was conducted to allow members of a four-person expert panel to determine the extent of treatment-related findings in each of the three trout studies. The PWG was performed according to the United States Environmental Protection Agency (US EPA) Pesticide Regulation (PR) 94-5 (EPA Pesticide Regulation, 1994). In accordance with standard procedures, the PWG review was conducted by the non-voting chairperson in a manner intended to minimize bias, and thus during the evaluation, the four voting panelists were unaware of the treatment group status of individual fish and the original diagnoses associated with the histologic sections. Based on the results of this review, findings related to diclofenac exposure included minimal to slightly increased thickening of the gill filament tips in fish exposed to the highest concentration tested (1,000 μg/L), plus a previously undiagnosed finding, decreased hepatic glycogen, which also occurred at the 1,000 μg/L dose level. The panel found little evidence to support other reported effects of diclofenac in trout, and thus the overall NOEC was determined to be >320 μg/L. By consensus, the PWG panel was able to identify diagnostic inconsistencies among and within the three prior studies; therefore this exercise demonstrated the value of the pathology peer review/PWG approach for assessing the reliability of histopathology results that may be used by regulatory agencies for risk assessment.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity.
Resumo:
BACKGROUND: The unimodal approach of using pentazocine as post-cesarean section pain relief is inadequate, hence the need for a safer, easily available and more effective multimodal approach. AIM: To evaluate the effectiveness of rectal diclofenac combined with intramuscular pentazocine for postoperative pain following cesarean section. METHODS: In this double blind clinical trial, 130 pregnant women scheduled for cesarean section under spinal anesthesia were randomly assigned to two groups. Group A received 100mg diclofenac suppository and group B received placebo suppository immediately following surgery, 12 and 24h later. Both groups also received intramuscular pentazocine 30mg immediately following surgery and 6 hourly postoperatively in the first 24 h. Postoperative pain was assessed by visual analogue scale at end of surgery and 2, 12 and 24 h after surgery. Patient satisfaction scores were also assessed. RESULTS: One hundred and sixteen patients completed the study. Combining diclofenac and pentazocine had statistically significant reduction in pain intensity at 2, 12, and 24 hours postoperatively compared to pentazocine alone (p <0.05). No significant side effects were noted in both groups. The combined group also had significantly better patient satisfaction scores. CONCLUSION: The addition of diclofenac suppository to intramuscular pentazocine provides better pain relief after cesarean section and increased patient satisfaction.