50 resultados para dibenzofurans
Resumo:
The purpose of this research was to determine polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) in five chlorinated chemicals (phthalocyanine copper, phthalocyanine green, chloranil-1 and 2, and triclosan), and to compare their 2,3,7,8-tetrachlordibenzo-IpI-dioxin equivalents (TEQ). The distribution patterns of total PCDD/Fs and 2,3,7,8-substituted PCDD/Fs were elucidated in detail. The TEQ values of toxic PCDD/Fs in all chemicals were in the range of 5.03-1379.55 ng I-TEQ/kg. The contribution of OCDD and OCDF in phthalocyanine green was 75% of the total TEQ. For chloranils, the maximum contribution of toxic PCDD/Fs was from 2,3,7,8-substituted HxCDF and 2,3,7,8-substituted HpCDF. The TEQ of HxCDF and HpCDF in chloranil-1 was 90% and in chloranil-2 was 71%. And the toxic contribution increased with the degree of chlorination for PCDFs. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Despite considerable advances in reducing the production of dioxin-like toxicants in recent years, contamination of the food chain still occasionally occurs resulting in huge losses to the agri-food sector and risk to human health through exposure. Dioxin-like toxicity is exhibited by a range of stable and bioaccumulative compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), produced by certain types of combustion, and man-made coplanar polychlorinated biphenyls (PCBs), as found in electrical transformer oils. While dioxinergic compounds act by a common mode of action making exposure detection biomarker based techniques a potentially useful tool, the influence of co-contaminating toxicants on such approaches needs to be considered. To assess the impact of possible interactions, the biological responses of H4IIE cells to challenge by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in combination with PCB-52 and benzo-a-pyrene (BaP) were evaluated by a number of methods in this study. Ethoxyresorufin-O-deethylase (EROD) induction in TCDD exposed cells was suppressed by increasing concentrations of PCB-52, PCB-153, or BaP up to 10 mu M. BaP levels below 1 mu M suppressed TCDD stimulated EROD induction, but at higher concentrations, EROD induction was greater than the maximum observed when cells were treated with TCDD alone. A similar biphasic interaction of BaP with TCDD co-exposure was noted in the AlamarBlue assay and to a lesser extent with PCB-52. Surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) profiling of peptidomic responses of cells exposed to compound combinations was compared. Cells co-exposed to TCDD in the presence of BaP or PCB-52 produced the most differentiated spectra with a substantial number of non-additive interactions observed. These findings suggest that interactions between dioxin and other toxicants create novel, additive, and non-additive effects, which may be more indicative of the types of responses seen in exposed animals than those of single exposures to the individual compounds.
Resumo:
A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, polychlorinated dibenzo-p-dioxins/dibenzofurans and polychlorinated biphenyls in biosolids and compost-like-outputs (CLOs) were, in most cases, between 5-50 times lower than proposed and implemented European limit values for biosolids or composts applied to agricultural land. However, the technical basis for these limits may need to be re-evaluated. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected in the biosolids and compost-like-outputs and their potential contribution to the overall toxic equivalency will be assessed. Other, ‘emerging’ contaminants such as perfluoralkyl compounds (PFCs) and organophosphate flame retardants were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence to improve confidence in the use of waste-derived materials in agriculture and establish guidelines to protect the food chain where necessary.
Resumo:
One of the most useful methods for elimination of solid residues of health services (SRHS) is incineration. However, it also provokes the emission of several hazardous air pollutants such as heavy metals, furans and dioxins, which produce reactive oxygen species and oxidative stress. The present study, which is parallel to an accompanied paper (Avila Jr. et al., this issue), investigated several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of vitamin E, lipoperoxidation = TBARS, reduced glutathione = GSH, oxidized glutathione = GSSG, and activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in three different groups (n = 20 each) exposed to airborne contamination associated with incineration of SRHS: workers directly (ca. 100 m from the incinerator) and indirectly exposed (residents living ca. 5 km the incineration site), and controls (non-exposed subjects). TBARS and GSSG levels were increased whilst GSH, TG and alpha-tocopherol contents were decreased in workers and residents compared to controls. Increased GST and CAT activities and decreased GPx activities were detected in exposed subjects compared to controls, while GR did not show any difference among the groups. In conclusion, subjects directly or indirectly exposed to SRHS are facing an oxidative insult and health risk regarding fly ashes contamination from SRHS incineration.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Persistent organic pollutants (POPs) is a group of chemicals that are toxic, undergo long-range transport and accumulate in biota. Due to their persistency the distribution and recirculation in the environment often continues for a long period of time. Thereby they appear virtually everywhere within the biosphere, and poses a toxic stress to living organisms. In this thesis, attempts are made to contribute to the understanding of factors that influence the distribution of POPs with focus on processes in the marine environment. The bioavailability and the spatial distribution are central topics for the environmental risk management of POPs. In order to study these topics, various field studies were undertaken. To determine the bioavailable fraction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated naphthalenes (PCNs), and polychlorinated biphenyls (PCBs) the aqueous dissolved phase were sampled and analysed. In the same samples, we also measured how much of these POPs were associated with suspended particles. Different models, which predicted the phase distribution of these POPs, were then evaluated. It was found that important water characteristics, which influenced the solid-water phase distribution of POPs, were particulate organic matter (POM), particulate soot (PSC), and dissolved organic matter (DOM). The bioavailable dissolved POP-phase in the water was lower when these sorbing phases were present. Furthermore, sediments were sampled and the spatial distribution of the POPs was examined. The results showed that the concentration of PCDD/Fs, and PCNs were better described using PSC- than using POM-content of the sediment. In parallel with these field studies, we synthesized knowledge of the processes affecting the distribution of POPs in a multimedia mass balance model. This model predicted concentrations of PCDD/Fs throughout our study area, the Grenlandsfjords in Norway, within factors of ten. This makes the model capable to validate the effect of suitable remedial actions in order to decrease the exposure of these POPs to biota in the Grenlandsfjords which was the aim of the project. Also, to evaluate the influence of eutrophication on the marine occurrence PCB data from the US Musselwatch and Benthic Surveillance Programs are examined in this thesis. The dry weight based concentrations of PCB in bivalves were found to correlate positively to the organic matter content of nearby sediments, and organic matter based concentrations of PCB in sediments were negatively correlated to the organic matter content of the sediment.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Since 2000, a surprisingly high number of macroscopical gonad alterations has been reported in whitefish (Coregonus spp.) from Lake Thun, Switzerland. This unique phenomenon is still unexplained and has received much public attention. As one possible trigger for these effects, the presence of persistent, bioaccumulative and toxic compounds acting as endocrine disruptors in the lake has been discussed. In this study, concentrations of selected persistent organic pollutants were examined in two morphs of whitefish from Lake Thun and their link to the observed abnormalities was investigated. Analyzed compound classes included polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated naphthalenes, polybrominated diphenyl ethers and hexabromocyclododecanes. The target substances were identified in all samples and concentrations of the analyzed compounds were highly correlated among each other. These correlations show that the analyzed substances have the same distribution pattern throughout the lake and that uptake, accumulation and elimination processes are similar. Significant differences in contaminant levels within the samples existed between the two analyzed morphs of whitefish, most likely due to different age, food patterns and growth rate. No difference in contaminant levels was observed between fish with abnormal gonads and fish with normal gonads, suggesting no causal link between the investigated lipophilic organohalogen compounds present in fish and the observed gonad abnormalities in whitefish from Lake Thun. A comparison to existing data shows that concentrations in Lake Thun whitefish are at the lower bound of contaminant levels in whitefish from Swiss lakes or from European waters.
Resumo:
Sediments can act as long-term sinks for environmental pollutants. Within the past decades, dioxin-like compounds (DLCs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in the scientific community. To investigate the time- and concentration-dependent uptake of DLCs and PAHs in rainbow trout (Oncorhynchus mykiss) and their associated toxicological effects, we conducted exposure experiments using suspensions of three field-collected sediments from the rivers Rhine and Elbe, which were chosen to represent different contamination levels. Five serial dilutions of contaminated sediments were tested; these originated from the Prossen and Zollelbe sampling sites (both in the river Elbe, Germany) and from Ehrenbreitstein (Rhine, Germany), with lower levels of contamination. Fish were exposed to suspensions of these dilutions under semi-static conditions for 90 days. Analysis of muscle tissue by high resolution gas chromatography and mass spectrometry and of bile liquid by high-performance liquid chromatography showed that particle-bound PCDD/Fs, PCBs and PAHs were readily bioavailable from re-suspended sediments. Uptake of these contaminants and the associated toxicological effects in fish were largely proportional to their sediment concentrations. The changes in the investigated biomarkers closely reflected the different sediment contamination levels: cytochrome P450 1A mRNA expression and 7-ethoxyresorufin-O-deethylase activity in fish livers responded immediately and with high sensitivity, while increased frequencies of micronuclei and other nuclear aberrations, as well as histopathological and gross pathological lesions, were strong indicators of the potential long-term effects of re-suspension events. Our study clearly demonstrates that sediment re-suspension can lead to accumulation of PCDD/Fs and PCBs in fish, resulting in potentially adverse toxicological effects. For a sound risk assessment within the implementation of the European Water Framework Directive and related legislation, we propose a strong emphasis on sediment-bound contaminants in the context of integrated river basin management plans.
Resumo:
The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.
Resumo:
The catalytic activity and durability of 2 wt.% Pd/Al2O3 in powder and washcoated on cordierite monoliths were examined for the liquid phase hydrodechlorination (LPHDC) of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs), also known as dioxins. NaOH was employed as a neutralizing agent, and 2-propanol was used as a hydrogen donor and a solvent. Fresh and spent powder and monolith samples were characterized by elemental analysis, surface area, hydrogen chemisorption, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and transmission electron microscopy/energy dispersive X-ray spectroscopy (TEM/EDX). Three reactor configurations were compared including the slurry and monolith batch reactors as well as the bubble loop column resulting in 100, 70, and 72% sample toxicity reduction, respectively, after 5 h of reaction. However, the slurry and monolith batch reactors lead to catalyst sample loss via a filtration process (slurry) and washcoat erosion (monolith batch), as well as rapid deactivation of the powder catalyst samples. The monolith employed in the bubble loop column remained stable and active after four reaction runs. Three preemptive regeneration methods were evaluated on spent monolith catalyst including 2-propanol washing, oxidation/reduction, and reduction. All three procedures reactivated the spent catalyst samples, but the combustion methods proved to be more efficient at eliminating the more stable poisons.
Resumo:
Combustion runs at 700 °C in a horizontal laboratory furnace were carried out on two different electric wires (PVC and halogen-free wire). Tests were performed in the presence and in the absence of the metal conductor of the wires. The analyses of the polycyclic aromatic hydrocarbons (PAHs), chlorobenzenes (CBzs), chlorophenols (CPhs), mono- to octa-chlorodibenzo-p-dioxin and dibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, PAHs production decreases in the presence of metal, while a higher amount of chlorinated compounds are emitted. Respect to the PCDD/Fs, the PVC wire in the presence of metal presents the highest emission, with a much more emission of furans than dioxins. The maximum emission is with 2 or 3 chlorine atom PCDD/Fs. PCBs emission correlates with PCDD/F production and represents 3–4% of total toxicity, determined by using WHO2005 factors.
Resumo:
On the basis of laboratory experiments with model mixtures (active carbon + CuBr2 at different loads), this work studies the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) by de novo synthesis. For the different samples, the temperature of the maximum carbon oxidation rate was determined by thermogravimetric analysis, and a kinetic model was proposed for the degradation of the materials in an oxidizing atmosphere (synthetic air). The effect of the addition of different amounts of CuBr2 was studied, finding that its presence accelerates the degradation of the carbonaceous structure in the presence of oxygen. The thermal degradation of the samples in air is satisfactorily described by a first-order single-reaction model. In addition, combustion runs of one of the mixtures (consisting of activated carbon + 50 wt % CuBr2, pyrolyzed at 700 °C) were performed in a quartz horizontal laboratory furnace. The analysis of the emissions and the solid residue proved the formation of brominated dioxins and furans at 300, 400, and 500 °C, with a maximum yield at 300 °C (91.7 ng/g of total PBDD/Fs) and a higher bromination degree with increasing temperature.