944 resultados para design for additive manufacturing
Resumo:
In the manufacturing industry the term Process Planning (PP) is concerned with determining the sequence of individual manufacturing operations needed to produce a given part or product with a certain machine. In this technical report we propose a preliminary analysis of scientific literature on the topic of process planning for Additive Manufacturing (AM) technologies (i.e. 3D printing). We observe that the process planning for additive manufacturing processes consists of a small set of standard operations (repairing, orientation, supports, slicing and toolpath generation). We analyze each of them in order to emphasize the most critical aspects of the current pipeline as well as highlight the future challenges for this emerging manufacturing technology.
Resumo:
Part 10: Sustainability and Trust
Resumo:
This dissertation investigates de role of the new additive manufacturing techniques in the treatment of pathologies with a patient-specific approach. Throughout this work the development methodology of these said products is explained in order to understand the different stages required to achieve a tailor made solution. The goal is to demonstrate the importance of the manufacturing technique and its capabilities to tailor-fit devices to patients and the adaptability of the process to tackle the most diverse situations. Three real cases are documented in order to prove the viability of the method and to showcase its advantages. Whenever possible patient-specific solutions are compared to their “off-the-shelf” counterparts in order to establish the pros and cons of each one of them. The dissertation is an insight into a possible future for the medical devices industry, where customization is expected to be the standard approach in the treatment of patients.
Resumo:
Traditionally, the teaching of human anatomy in health sciences has been based on the use of cadaveric material and bone parts for practical study. The bone materials get deteriorated and hardly mark the points of insertion of muscles. However, the advent of new technologies for 3D printing and creation of 3D anatomical models applied to teaching, has enabled to overcome these problems making teaching more dynamic, realistic and attractive. This paper presents some examples of the construction of three-dimensional models of bone samples, designed using 3D scanners for posterior printing with addition printers or polymer injection printers.
Resumo:
In the most recent years, Additive Manufacturing (AM) has drawn the attention of both academic research and industry, as it might deeply change and improve several industrial sectors. From the material point of view, AM results in a peculiar microstructure that strictly depends on the conditions of the additive process and directly affects mechanical properties. The present PhD research project aimed at investigating the process-microstructure-properties relationship of additively manufactured metal components. Two technologies belonging to the AM family were considered: Laser-based Powder Bed Fusion (LPBF) and Wire-and-Arc Additive Manufacturing (WAAM). The experimental activity was carried out on different metals of industrial interest: a CoCrMo biomedical alloy and an AlSi7Mg0.6 alloy processed by LPBF, an AlMg4.5Mn alloy and an AISI 304L austenitic stainless steel processed by WAAM. In case of LPBF, great attention was paid to the influence that feedstock material and process parameters exert on hardness, morphological and microstructural features of the produced samples. The analyses, targeted at minimizing microstructural defects, lead to process optimization. For heat-treatable LPBF alloys, innovative post-process heat treatments, tailored on the peculiar hierarchical microstructure induced by LPBF, were developed and deeply investigated. Main mechanical properties of as-built and heat-treated alloys were assessed and they were well-correlated to the specific LPBF microstructure. Results showed that, if properly optimized, samples exhibit a good trade-off between strength and ductility yet in the as-built condition. However, tailored heat treatments succeeded in improving the overall performance of the LPBF alloys. Characterization of WAAM alloys, instead, evidenced the microstructural and mechanical anisotropy typical of AM metals. Experiments revealed also an outstanding anisotropy in the elastic modulus of the austenitic stainless-steel that, along with other mechanical properties, was explained on the basis of microstructural analyses.
Resumo:
This work is going to show the activities performed in the frame of my PhD studies at the University of Bologna, under the supervision of Prof. Mauro Comes Franchini, at the Department of Industrial Chemistry “Toso Montanari”. The main topic of this dissertation will be the study of organic-inorganic hybrid nanostructures and materials for advanced applications in different fields of materials technology and development such as theranostics, organic electronics and additive manufacturing, also known as 3D printing. This work is therefore divided into three chapters, that recall the fundamentals of each subject and to recap the state-of-the-art of scientific research around each topic. In each chapter, the published works and preliminary results obtained during my PhD career will be discussed in detail.
Resumo:
Il 3D printing è presente da tempo in molti settori economici e da sempre ha nella sanità uno dei principali ambiti di applicazione. Durante il corso del presente lavoro sono state esaminate le principali applicazioni in campo sanitario con particolare focus sulla fase di planning in caso di chirurgia complessa. La pianificazione risulta essere la fase maggiormente impattante nel contesto più globale di gestione del paziente in quanto una maggior accuratezza nella visualizzazione del caso clinico consente di ottimizzare l’identificazione di un adeguato approccio chirurgico con ovvie conseguenti ripercussioni positive sulla totalità della degenza del paziente all’interno della struttura clinica ospitante. Nel dettaglio è stato valutato l’utilizzo di un innovativo protocollo di pre-planning e follow-up operatorio tramite la realizzazione di modelli stampati 3D a partire da immagini di diagnostica classica (TAC, MRI, 3Dscan) che hanno consentito di poter fornire allo specialista clinico di riferimento un prodotto che riproducendo perfettamente l’anatomia del soggetto (morfologia-proprietà fisiche del tessuto) ha consentito allo stesso un miglioramento delle usuali pratiche chirurgiche e terapeutiche in casi di elevata complessità in un arco temporale ristretto. I parametri utilizzati per la valutazione dei reali benefici dell’approccio esposto sono stati: tempi di pianificazione chirurgica e tempi di intervento all’interno di una più globale analisi dei costi associati. A fronte di un’indagine interna preventiva presso l’azienda ospedaliera ospitante sono stati designati i seguenti reparti come settori pilota: maxillofacciale, neurochirurgia e radiologia interventistica. Lo studio è stato svolto in collaborazione con l’ospedale M.Bufalini di Cesena in qualità di referente clinico e l’azienda Aid4Med Srl in qualità di azienda leader in pianificazione operatoria tramite ausili realizzati tramite tecniche di additive manufacturing.
Resumo:
The increased exploitation of carbon fiber reinforced polymers (CFRP) is inevitably bringing about an increase in production scraps and end-of-life components, resulting in a sharp increase in CFRP waste. Therefore, it is of paramount importance to find efficient ways to reintroduce waste into the manufacturing cycle. At present, several recycling methods for treating CFRPs are available, even if all of them still have to be optimized. The step after CFRP recycling, and also the key to build a solid and sustainable CFRP recycling market, is represented by the utilization of Re-CFs. The smartest way to utilize recovered carbon fibers is through the manufacturing of recycled CFRPs, that can be done by re-impregnating the recovered fibers with a new polymeric matrix. Fused Filament Fabrication (FFF) is one of the most widely used additive manufacturing (3D printing) techniques that fabricates parts with a polymeric filament deposition process that allows to produce parts adding material layer-by-layer, only where it is needed, saving energy, raw material cost, and waste. The filament can also contain fillers or reinforcements such as recycled short carbon fibers and this makes it perfectly compliant with the re-application of the shortened recycled CF. Therefore, in this thesis work recycled and virgin carbon fiber reinforced PLA filaments have been initially produced using 5% and 10% of CFs load. Properties and characteristics of the filaments have been determined conducting different analysis (TGA, DMA, DSC). Subsequently the 5%wt. Re-CFs filament has been used to 3D print specimens for mechanical characterization (DMA, tensile test and CTE), in order to evaluate properties of printed PLA composites containing Re-CFs and evaluate the feasibility of Re-CFs in 3D printing application.
Resumo:
Scopo dell'elaborato è stato la produzione di un materiale bio-composito formato da PLA ed un rinforzo di origine naturale derivante dal settore agricolo, nell'ottica di diminuire i costi dei manufatti costituiti da tale materiale, riducendo il contenuto di PLA, e rivalorizzare lo scarto di farine in applicazioni di stampa 3D. Inizialmente le farine sono state studiate mediante analisi spettroscopiche (FT-ATR), osservazioni al microscopio ottico e analisi TGA. Dopodiché sono stati prodotti filamenti per stampa 3D di materiale composito al 10% e caratterizzati termicamente (DSC, TGA, Cp) e meccanicamente (DMA). Successivamente alla stampa 3D di questi filamenti, sono stati analizzati comportamenti termici (CTE, DSC) e meccanici (prove di trazione, DMA) dei provini stampati. Si è infine valutata l'influenza del trattamento termico di ricottura sui provini stampati mediante analisi DSC e DMA.
Resumo:
Additive Manufacturing (AM) is nowadays considered an important alternative to traditional manufacturing processes. AM technology shows several advantages in literature as design flexibility, and its use increases in automotive, aerospace and biomedical applications. As a systematic literature review suggests, AM is sometimes coupled with voxelization, mainly for representation and simulation purposes. Voxelization can be defined as a volumetric representation technique based on the model’s discretization with hexahedral elements, as occurs with pixels in the 2D image. Voxels are used to simplify geometric representation, store intricated details of the interior and speed-up geometric and algebraic manipulation. Compared to boundary representation used in common CAD software, voxel’s inherent advantages are magnified in specific applications such as lattice or topologically structures for visualization or simulation purposes. Those structures can only be manufactured with AM employment due to their complex topology. After an accurate review of the existent literature, this project aims to exploit the potential of the voxelization algorithm to develop optimized Design for Additive Manufacturing (DfAM) tools. The final aim is to manipulate and support mechanical simulations of lightweight and optimized structures that should be ready to be manufactured with AM with particular attention to automotive applications. A voxel-based methodology is developed for efficient structural simulation of lattice structures. Moreover, thanks to an optimized smoothing algorithm specific for voxel-based geometries, a topological optimized and voxelized structure can be transformed into a surface triangulated mesh file ready for the AM process. Moreover, a modified panel code is developed for simple CFD simulations using the voxels as a discretization unit to understand the fluid-dynamics performances of industrial components for preliminary aerodynamic performance evaluation. The developed design tools and methodologies perfectly fit the automotive industry’s needs to accelerate and increase the efficiency of the design workflow from the conceptual idea to the final product.
Resumo:
This manuscript represents an overview on the studies I was involved in during my PhD at the Industrial Chemistry Department “Toso Montanari”, in the ASOM (Advanced Smart Organic Materials) research group under the supervision of Prof. Letizia Sambri and Prof. Mauro Comes Franchini. Those research have been focused on the development of organic materials for advanced applications in different fields, among which organic electronics, additive manufacturing (3D Printing) and biomedical applications can be underlined.
Resumo:
The increasing environmental global regulations have directed scientific research towards more sustainable materials, even in the field of composite materials for additive manufacturing. In this context, the presented research is devoted to the development of thermoplastic composites for FDM application with a low environmental impact, focusing on the possibility to use wastes from different industrial processes as filler for the production of composite filaments for FDM 3D printing. In particular carbon fibers recycled by pyro-gasification process of CFRP scraps were used as reinforcing agent for PLA, a biobased polymeric matrix. Since the high value of CFs, the ability to re-use recycled CFs, replacing virgin ones, seems to be a promising option in terms of sustainability and circular economy. Moreover, wastes from different agricultural industries, i.e. wheat and rice production processes, were valorised and used as biofillers for the production of PLA-biocomposites. The integration of these agricultural wastes into PLA bioplastic allowed to obtain biocomposites with improved eco-sustainability, biodegradability, lightweight, and lower cost. Finally, the study of novel composites for FDM was extended towards elastomeric nanocomposite materials, in particular TPU reinforced with graphene. The research procedure of all projects involves the optimization of production methods of composite filaments with a particular attention on the possible degradation of polymeric matrices. Then, main thermal properties of 3D printed object are evaluated by TGA, DSC characterization. Additionally, specific heat capacity (CP) and Coefficient of Linear Thermal Expansion (CLTE) measurements are useful to estimate the attitude of composites for the prevention of typical FDM issues, i.e. shrinkage and warping. Finally, the mechanical properties of 3D printed composites and their anisotropy are investigated by tensile test using distinct kinds of specimens with different printing angles with respect to the testing direction.
Resumo:
Lo scopo di questa tesi è quello di mostrare le potenzialità e le possibili soluzioni dell’Additive Manufacturing per l’ottimizzazione di macchine elettriche in risposta al problema delle terre rare. Nel primo capitolo viene presentato lo stato dell’arte dell’Additive Manufacturing mostrando una rapida panoramica delle sue caratteristiche principali, le potenzialità future e i settori di utilizzo. Il secondo capitolo propone le principali tecniche di Stampa 3D per la realizzazione di oggetti evidenziando di ognuna i pregi e i difetti. All’interno del terzo capitolo, viene illustrata la struttura di una macchina elettrica mostrando le varie componenti e presentando delle possibili ottimizzazioni realizzate tramite Additive Manufacturing. Nel quarto capitolo vengono presentati esempi di macchine elettriche complete realizzate attraverso le tecniche dell’Additive Manufacturing. Nel quinto capitolo vengono confrontati un Interior Permanent Magnets motor e un Synchronous Relectance Machine.
Resumo:
Da anni è iniziata la quarta rivoluzione industriale che ha portato all’industria 4.0 e che, a differenza delle precedenti, è trainata da diverse tecnologie, tra cui l’Additive Manufacturing (AM). Lo scopo della tesi è quello di analizzare i prodotti ottenuti tramite AM e le loro proprietà meccaniche (resistenza a trazione, durezza, vita a fatica…) per paragonarli con quelli ottenuti tramite metodi convenzionali (fonderia, lavorazione alle macchine utensili…). Il primo capitolo introduttivo presenta le principali caratteristiche del processo, tra cui: i materiali utilizzati, i parametri, i vantaggi e gli svantaggi rispetto ai tradizionali metodi produttivi e l’evoluzione della tecnologia. Il secondo capitolo tratta più in particolare degli acciai, delle leghe di alluminio e di titanio, illustrando le principali tecnologie utilizzate e l’influenza dei parametri di processo e mette, poi, in relazione la microstruttura che si crea in seguito ad AM con le proprietà meccaniche ottenibili, anche in virtù di post-trattamenti. Nel terzo capitolo sono esaminati i materiali polimerici. Vengono illustrate le principali tecnologie utilizzate e le proprietà meccaniche ottenibili in relazione alla materia prima utilizzata e ai parametri di processo. Infine, sono valutati gli effetti del rinforzo in fibra sulle proprietà meccaniche. Nel capitolo finale, si traggono le conclusioni sull’utilità dell’AM per capirne l’importante ruolo all’interno della fabbricazione. Si analizza brevemente il mercato italiano relativo alle tecnologie additive e si fa un accenno a quelli che potrebbero essere gli sviluppi nei prossimi anni.
Resumo:
L’Additive Manufacturing è una tecnologia che ormai da qualche anno sta diventando sempre piu’ utilizzata in numerosi ambiti, tra cui l’automotive. In questo settore sono molte le aziende che stanno sperimentando e cercando di inglobare tale processo al loro interno. Tra queste l’Università di Bologna, dove un team studentesco motociclistico si occupa della creazione di un prototipo di moto elettrica da competizione. Nell'intento di utilizzare tale tecnologia, sono numerose le informazioni necessarie per la corretta progettazione. Infatti, le caratteristiche dei materiali che vengono usati principalmente non sono ancora del tutto chiare e presentano alcuni aspetti poco investigati. Per questo motivo, in tale progetto si è deciso di caratterizzare a fatica provini realizzati in AlSi10Mg che presentassero una particolare geometria, per indagare anche l’influenza dello spessore. Sono quindi stati realizzati i campioni, anche con alcuni trattamenti di post-processo e sono poi stati osservati i risultati a fatica e alcune caratteristiche, tra cui: porosità, densità e struttura dei bagni di fusione. Tali valori riscontrati sono poi stati confrontati con quelli ottenuti in altri studi, cercando di comprendere differenze e motivazioni dei fenomeni osservati.