977 resultados para density dependent thinning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Etmopterus spinax is a small-sized deep-water lantern shark that occurs in the Eastern Atlantic and the Mediterranean. Differences in depth distribution, densities, size at maturity and fecundity were compared between a population that has suffered high levels of fishing mortality during the last decades (Southern Portugal in the northeast Atlantic) and a population where low fishing pressure below 500 m occurs at present or has occurred in the last decades (Northern Alboran Sea in the western Mediterranean). The density of this species, as derived by experimental bottom trawl survey, off the coast of Southern Portugal, is substantially lower than in the Northern Alboran Sea throughout the entire depth range. The Atlantic population is maturing at smaller sizes than the Mediterranean population and has a lower mean fecundity. Specifically, sizes at maturity for Southern Portugal and the Northern Alboran Sea were, respectively, 25.39 and 28.31 cm TL for males and 30.86 and 34.18 cm TL for females, while mean fecundities for Southern Portugal and the Northern Alboran Sea were, respectively, 9.94 and 11.06 oocytes per mature female. This work demonstrated the possible presence of density-dependent mechanisms in the Southern Portuguese population of E. spinax that has lowered the size at maturity as a possible result of excessive fishing mortality. However, given that this is an aplacentary viviparous shark, where fecundity is dependent on female size, this compensatory mechanism seems to have a limited efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

密度制约是否为自然森林维持物种共存的普遍性机制,生态学家对此一直就有争议。目前密度制约的普遍性研究主要集中于热带森林,而针对亚热带森林的研究还比较少见。本文以浙江古田山24 公顷亚热带常绿阔叶林固定监测样地第一次调查数据为基础,主要采用点格局分析的双变量函数g(r),研究了密度制约是否作用于样地内大部分木本植物,目的在于探讨密度制约在亚热带常绿阔叶林内物种多样性维持中的作用。 检验密度制约效应的常用方法是: 假定在种内竞争、种内个体之间的病虫害传播等条件下,种群的聚集程度是否随年龄的增加而下降。但是生境的异质性也可能导致种群聚集程度的下降。所以在密度制约的普遍性检验之前,首先分析了生境异质性是否影响树木的分布,然后分析种群分布格局,探讨除了生境异质性以外其它影响种群分布的驱动因子,同时为分析密度制约的发生做解释。结果发现生境异质性影响古田山树木的分布。用完全随机零模型不排除异质性,被检验的64个物种几乎在0-30m所有的尺度上都表现聚集。用异质性泊松分布零模型排除异质性,59个被检验物种中58个表现聚集。排不排除异质性,同种聚集都在整个样地中占主要地位,而且随着远离目标个体同种个体的密度逐渐下降,植株主要聚集在同种邻体的周围。结合下面的关联性分析,更新植株主要集中在成年个体周围,说明除了生境异质性效应促进树木聚集分布以外,以繁殖体为中心的局部扩散是大部分物种同种聚集的主要原因。 环境异质性影响树木分布,干扰密度制约的检验。然而,排除生境异质性的影响,也不能肯定密度制约是否是群落物种多样性普遍性的维持机制。用随机标签零模型案例-对照设计,小径级生长阶段的树木格局作为案例,成年树作为对照代表生境异质性的作用,通过小径级树木格局与成年树格局相比,排除生境异质性的干扰,64个被检验物种中50种(78.1%)表现了密度制约稀疏效应。结果表明密度制约稀疏机制调节了样地大部分物种,是古田山亚热带森林群落物种多样性维持的重要机制。同时,密度制约稀疏效应主要发生在局部尺度上,与同种短距离聚集结果一致。另外,密度制约稀疏效应更易于影响丰富种(24公顷样地内个体数>1000)的种群结构。 Janzen-Connell假说的距离制约模型认为繁殖体制约后代更新成功,导致成年树个体间距增大,并得到众多的野外观察证明。然而,在大尺度的森林样地研究中,没有发现这个效应广泛存在。本研究采用独立性零模型分析了不同生活史阶段在空间上的关联性,特别是成年树和幼树、小树的关联性,反过来推演是否成年树对后代的距离制约驱动了种群分布的空间动态。综合分析古田山64个物种的不同径级阶段的空间关联性,同时参照Condit 等(1992,1994)的研究结果:成年树对后代的距离制约效应在小于5m的尺度上发生强烈。有20个物种(31.3%)的更新体聚集密度最高点在离成年树≥5m的距离上,加上21个物种的更新体与成年树的关联性成相互排斥和随机分布,64个被检验的物种中有41(64.1%)个物种表现了Janzen-Connell 假说的繁殖体对后代的距离制约效应。同时,54(84.4%)个物种的小树成为新的成年树,出现在成年体周围小于5m的距离内的比例最高。结果表明这个效应提高成年树的间距是有限的,然而,它仍然调节了样地内大部分物种的分布格局,促进了物种共存。 同种密度制约调节建成树木(胸径≥1cm)的空间结构得到很好的研究。然而最近的研究表明:病菌不仅在同种个体之间传播,同时也在近缘物种之间传播。因此,只包括同种个体的密度制约模型可能大大低估了密度制约效应的作用。本研究分析了古田山24 公顷内159 个物种。运用平均谱系多样性指数(APd) 和最近分类谱系多样性指数(NTPd)检验随着目标个体径级的增加系统发育结构变化的趋势。研究发现,在15、20、30m 的尺度上,APd 指数都随着生长阶段的增加而显著提高,在10、15、20、30m 的尺度上,NTPd 随着生长阶段的增加而显著提高;在5m 的尺度上,谱系多样性与生长阶段不存在显著关联性,这些结果表明谱系多样性制约与取样尺度相关。在DBH >30 cm 生长阶段, APd 下降,NTPd 上升,说明谱系多样性制约加大老树之间的谱系距离,但是由于类似的生境偏好,又倾向于聚集在类似的生境。 本研究的结果表明同种和近缘种的密度制约是亚热带常绿阔叶林生物多样性群落水平上重要的维持机制,为Janzen-Connell 假说提供了支持;同时,生境异质性和局部扩散能在维持森林物种多样性中发挥重要作用。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Growth of Salmonella enterica in mammalian tissues results from continuous spread of bacteria to new host cells. Our previous work indicated that infective S. enterica are liberated from host cells via stochastic necrotic burst independently of intracellular bacterial numbers. Here we report that liver phagocytes can undergo apoptotic caspase-3-mediated cell death in vivo, with apoptosis being a rare event, more prevalent in heavily infected cells. The density-dependent apoptotic cell death is likely to constitute an alternative mechanism of bacterial spread as part of a bet-hedging strategy, ensuring an ongoing protective intracellular environment in which some bacteria can grow and persist.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial processes could play an important role in density-dependent population regulation because the disproportionate use of poor quality habitats as population size increases is widespread in animal populations-the so-called buffer effect. While the buffer effect patterns and their demographic consequences have been described in a number of wild populations, much less is known about how dispersal affects distribution patterns and ultimately density dependence. Here, we investigated the role of dispersal in spatial density dependence using an extraordinarily detailed dataset from a reintroduced Mauritius kestrel (Falco punctatus) population with a territorial (despotic) breeding system. We show that recruitment rates varied significantly between territories, and that territory occupancy was related to its recruitment rate, both of which are consistent with the buffer effect theory. However, we also show that restricted dispersal affects the patterns of territory occupancy with the territories close to release sites being occupied sooner and for longer as the population has grown than the territories further away. As a result of these dispersal patterns, the strength of spatial density dependence is significantly reduced. We conclude that restricted dispersal can modify spatial density dependence in the wild, which has implications for the way population dynamics are likely to be impacted by environmental change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Few studies have linked density dependence of parasitism and the tritrophic environment within which a parasitoid forages. In the non-crop plant-aphid, Centaurea nigra-Uroleucon jaceae system, mixed patterns of density-dependent parasitism by the parasitoids Aphidius funebris and Trioxys centaureae were observed in a survey of a natural population. Breakdown of density-dependent parasitism revealed that density dependence was inverse in smaller colonies but direct in large colonies (>20 aphids), suggesting there is a threshold effect in parasitoid response to aphid density. The CV2 of searching parasitoids was estimated from parasitism data using a hierarchical generalized linear model, and CV2>1 for A. funebris between plant patches, while for T. centaureae CV2>1 within plant patches. In both cases, density independent heterogeneity was more important than density-dependent heterogeneity in parasitism. Parasitism by T. centaureae increased with increasing plant patch size. Manipulation of aphid colony size and plant patch size revealed that parasitism by A. funebris was directly density dependent at the range of colony sizes tested (50-200 initial aphids), and had a strong positive relationship with plant patch size. The effects of plant patch size detected for both species indicate that the tritrophic environment provides a source of host density independent heterogeneity in parasitism, and can modify density-dependent responses. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Almost all stages of a plant pathogen life cycle are potentially density dependent. At small scales and short time spans appropriate to a single-pathogen individual, density dependence can be extremely strong, mediated both by simple resource use, changes in the host due to defence reactions and signals between fungal individuals. In most cases, the consequences are a rise in reproductive rate as the pathogen becomes rarer, and consequently stabilisation of the population dynamics; however, at very low density reproduction may become inefficient, either because it is co-operative or because heterothallic fungi do not form sexual spores. The consequence will be historically determined distributions. On a medium scale, appropriate for example to several generations of a host plant, the factors already mentioned remain important but specialist natural enemies may also start to affect the dynamics detectably. This could in theory lead to complex (e.g. chaotic) dynamics, but in practice heterogeneity of habitat and host is likely to smooth the extreme relationships and make for more stable, though still very variable, dynamics. On longer temporal and longer spatial scales evolutionary responses by both host and pathogen are likely to become important, producing patterns which ultimately depend on the strength of interactions at smaller scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite long-standing interest in the forms and mechanisms of density dependence, these are still imperfectly understood. However, in a constant environment an increase in density must reduce per capita resource availability, which in turn leads to reduced survival, fecundity and somatic growth rate. Here we report two population experiments examining the density dependent responses under controlled conditions of an important indicator species, Chironomus riparius. The first experiment was run for 35 weeks and was started at low density with replicate populations being fed three different rations. Increased ration reduced generation time and increased population growth rate (pgr) but had no effect on survival, fecundity and female body weight in the first generation. In the second generation there was a six-fold increase in generation time, presumably due to the greatly reduced per capita resource availability as the estimated initial densities of the second generation were 300 times greater than the first. Juvenile survival to emergence, fecundity, adult body weight and pgr declined by 90%, 75%, 35% and 99%, respectively. These large between-generation effects may have obscured the effects of the threefold variation in ration, as only survival to emergence significantly increased with ration in the second generation. These results suggest that some chironomid larvae survive a reduction in resource availability by growing more slowly. In the ephemeral habitats sometimes occupied by C. riparius, the effects of population density may depend crucially on the longevity of the environment. A second experiment was therefore performed to measure pgr from six different starting densities over an eight-week period. The relationship between pgr and density was concave, viewed from above. At densities above 16 larvae per cm(2), less than 1% of the population emerged and no offspring were produced. Under the conditions of experiment 2 - an 8-week habitat lifespan carrying capacity was estimated as 8 larvae per cm(2).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. We studied a reintroduced population of the formerly critically endangered Mauritius kestrel Falco punctatus Temmink from its inception in 1987 until 2002, by which time the population had attained carrying capacity for the study area. Post-1994 the population received minimal management other than the provision of nestboxes. 2. We analysed data collected on survival (1987-2002) using program MARK to explore the influence of density-dependent and independent processes on survival over the course of the population's development. 3.We found evidence for non-linear, threshold density dependence in juvenile survival rates. Juvenile survival was also strongly influenced by climate, with the temporal distribution of rainfall during the cyclone season being the most influential climatic variable. Adult survival remained constant throughout. 4. Our most parsimonious capture-mark-recapture statistical model, which was constrained by density and climate, explained 75.4% of the temporal variation exhibited in juvenile survival rates over the course of the population's development. 5. This study is an example of how data collected as part of a threatened species recovery programme can be used to explore the role and functional form of natural population regulatory processes. With the improvements in conservation management techniques and the resulting success stories, formerly threatened species offer unique opportunities to further our understanding of the fundamental principles of population ecology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Territoriality is widely accepted as the mechanism responsible for density-dependent mortality, emigration, and 'self-thinning' of populations of juvenile salmonine fishes in streams. Numerous studies have focused on territoriality exclusively in stream (lotic) environments and thus have fostered a stereotyped view of juvenile salmonines as sedentary and territorial. We term this behavioural paradigm the central-place territorial model (CPTM).

2. We tested predictions characterizing the CPTM for young-of-the-year (YOY) brook charr (Salvelinus fontinalis) in two Canadian lakes to determine if territoriality may also potentially limit space and population size of brook charr in lakes.

3. Our findings were not consistent with the CPTM. Fish in both lakes were not central-place forages. Maximum displacement distance did not increase with body length as predicted by the general salmonine model of Grant and Kramer (1990). Net displacement distanced increased with the proportion of time spent moving. Aggressive frequency was greatest for fish which spent large proportions of time moving and did not defend from a central-place.

4. Fish in both lakes were rarely aggressive, highly active, and often moved back over the same areas. However, lake fish which migrated to a tributary stream had no net displacement (central-place foraging) illustrating the immediate effects of current on foraging tactics and space-use.

5. The effect of hydrodynamic environment (flowing vs. still water) on fish behaviour needs to be explicitly considered in future models of salmonine behaviour.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Moose Alces alces gigas in Alaska, USA, exhibit extreme sexual dimorphism, with adult males possessing large, elaborate antlers. Antler size and conformation are influenced by age, nutrition and genetics, and these bony structures serve to establish social rank and affect mating success. Population density, combined with anthropogenic effects such as harvest, is thought to influence antler size. Antler size increased as densities of moose decreased, ostensibly a density-dependent response related to enhanced nutrition at low densities. The vegetation type where moose were harvested also affected antler size, with the largest-antlered males occupying more open habitats. Hunts with guides occurred in areas with low moose density, minimized hunter interference and increased rates of success. Such hunts harvested moose with larger antler spreads than did non-guided hunts. Knowledge and abilities allowed guides to satisfy demands of trophy hunters, who are an integral part of the Alaskan economy. Heavy harvest by humans was also associated with decreased antler size of moose, probably via a downward shift in the age structure of the population resulting in younger males with smaller antlers. Nevertheless, density-dependence was more influential than effects of harvest on age structure in determining antler size of male moose. Indeed, antlers are likely under strong sexual selection, but we demonstrate that resource availability influenced the distribution of these sexually selected characters across the landscape. We argue that understanding population density in relation to carrying capacity (K) and the age structure of males is necessary to interpret potential consequences of harvest on the genetics of moose and other large herbivores. Our results provide researchers and managers with a better understanding of variables that affect the physical condition, antler size, and perhaps the genetic composition of populations, which may be useful in managing and modeling moose populations.