980 resultados para deep bed filtration
Resumo:
Oxygen and carbon isotopic variability of the dominant (<38 µm) carbonate fraction within bedded, organic-carbon rich Lower Cretaceous sediment intervals from various DSDP sites are closely correlated with preservational changes in the carbonates. Isotopic fluctuations are absent where carbonate contents vary little and where the carbonate fraction is dominated by biogenic phytoplankton remains. Within each of the studied intervals oxygen and carbon isotopic ratios become increasingly more negative in samples with carbonate contents higher than about 60% in which the proportion of diagenetic microcarbonate increases rapidly. Carbon isotopic ratios show a trend towards positive values in samples with carbonate contents of less than 40% and strong signs of dissolution. The taxonomic composition of nannofossil assemblages varies little within single intervals, despite significant differential diagenesis among individual beds; this points towards ecological stability of oceanic surface waters during the deposition of alternating beds. Bedding is, however, closely related to changing bioturbation intensity, indicating repeated fluctuations of the deep-water renewal rates and oxygen supply. Various microbial decomposition processes of organic matter leading to bed-specific differential carbonate diagenesis resulted in an amplification of primary bedding features and are considered responsible for most of the observed fluctuations in the stable isotopic ratios and carbonate contents.
Resumo:
A quick new method is described for the quantification of absolute nannofossil proportions in deep-sea sediments. This method (SMS) is the combination of Spiking a sample with Microbeads and Spraying it on a cover slide. It is suitable for scanning electron microscope (SEM) analyses and for light microscope (LM) analyses. Repeated preparation and counting of the same sample (30 times) revealed a standard deviation of 10.5%. The application of tracer microbeads with different diameters and densities revealed no statistically significant differences between counts. The SMS-method yielded coccolith numbers that are statistically not significantly different from values obtained from the filtration-method. However, coccolith counts obtained by the random settling method are three times higher than the values obtained by the SMS- and the filtration-method.
Sea-bed photographs (benthos) from the AWI-Hausgarten area along OFOS profile PS62/191-1, transect I
Resumo:
Vermicompost filtration is a new on-site waste treatment system. Consequently, little is known about the filter medium properties. The aim of this preliminary study was to quantify physical and compositional properties of vermicompost filter beds that had been used to treat domestic solid organic waste and wastewater. This paper presents the trials performed on pilot-scale reactors filled with vermicompost from a full-scale vermicompost filtration system. Household solid organic waste and raw wastewater at the rate of 130 L/m(2)/d was applied to the reactor bed surface over a four-month period. It was found that fresh casts laid on the bed surface had a BOD of 1290 mg/g VS while casts buried to a depth of 10 cm had a BOD of 605 mg/g VS. Below this depth there was little further biodegradation of earthworm casts despite cast ages of up to five years. Solid material in the reactor accounted for only 7-10% of the reactor volume. The total voidage comprised of large free-draining pores, which accounted for 15-20% of the reactor volume and 60-70% micropores, able to hold up water against gravity. It was shown that water could flow through the medium micropores and macropores following a wastewater application. The wastewater flow characteristics were modeled by a two-region model based on the Richards Equation, an equation used to describe porous spatially heterogeneous materials.