794 resultados para decision support systems, GIS, interpolation, multiple regression
Resumo:
Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232).
Resumo:
The question of forming aim-oriented description of an object domain of decision support process is outlined. Two main problems of an estimation and evaluation of data and knowledge uncertainty in decision support systems – straight and reverse, are formulated. Three conditions being the formalized criteria of aimoriented constructing of input, internal and output spaces of some decision support system are proposed. Definitions of appeared and hidden data uncertainties on some measuring scale are given.
Resumo:
Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR.
Resumo:
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.
Resumo:
Industry practitioners are seeking to create optimal logistics networks through more efficient decision-making leading to a shift of power from a centralized position to a more decentralized approach. This has led to researchers, exploring with vigor, the application of agent based modeling (ABM) in supply chains and more recently, its impact on decision-making. This paper investigates reasons for the shift to decentralized decision-making and the impact on supply chains. Effective decentralization of decision-making with ABM and hybrid modeling is investigated, observing the methods and potential of achieving optimality.
Resumo:
The field of collaborative health planning faces significant challenges due to the lack of effective information, systems and the absence of a framework to make informed decisions. These challenges have been magnified by the rise of the healthy cities movement, consequently, there have been more frequent calls for localised, collaborative and evidence-driven decision-making. Some studies in the past have reported that the use of decision support systems (DSS) for planning healthy cities may lead to: increase collaboration between stakeholders and the general public, improve the accuracy and quality of the decision-making processes and improve the availability of data and information for health decision-makers. These links have not yet been fully tested and only a handful of studies have evaluated the impact of DSS on stakeholders, policy-makers and health planners. This study suggests a framework for developing healthy cities and introduces an online Geographic Information Systems (GIS)-based DSS for improving the collaborative health planning. It also presents preliminary findings of an ongoing case study conducted in the Logan-Beaudesert region of Queensland, Australia. These findings highlight the perceptions of decision-making prior to the implementation of the DSS intervention. Further, the findings help us to understand the potential role of the DSS to improve collaborative health planning practice.
Resumo:
The identification of plausible causes for water body status deterioration will be much easier if it can build on available, reliable, extensive and comprehensive biogeochemical monitoring data (preferably aggregated in a database). A plausible identification of such causes is a prerequisite for well-informed decisions on which mitigation or remediation measures to take. In this chapter, first a rationale for an extended monitoring programme is provided; it is then compared to the one required by the Water Framework Directive (WFD). This proposal includes a list of relevant parameters that are needed for an integrated, a priori status assessment. Secondly, a few sophisticated statistical tools are described that subsequently allow for the estiation of the magnitude of impairment as well as the likely relative importance of different stressors in a multiple stressed environment. The advantages and restrictions of these rather complicated analytical methods are discussed. Finally, the use of Decision Support Systems (DSS) is advocated with regard to the specific WFD implementation requirements.
Resumo:
This paper presents a development of decision support systems for solving scheduling problems. It consists of two parts — the first describing the production processes which can be handled by the system and the second describing how the system works.
Resumo:
The use of computing to support environmental planning and the development of land use models dates back to the late 1950s. The main thrust of computing applications, which by the early 1980s increasingly included the use of geospatial technologies, is their contribution to better planning and decision making. The computing tools and technologies are designed to enhance the planners’ capability to deal with complex environments and to plan for prosperous and livable communities. This paper examines the role of Information Technologies (IT) and particularly Internet Based Geographic Information Systems (Internet GIS) as spatial decision support systems to aid community based local decision making. The paper also covers the advantages and challenges of these internet based mapping applications and tools for collaborative decision making on the environment.
Resumo:
In the last few decades, the focus on building healthy communities has grown significantly (Ashton, 2009). There is growing evidence that new approaches to planning are required to address the challenges faced by contemporary communities. These approaches need to be based on timely access to local information and collaborative planning processes (Murray, 2006; Scotch & Parmanto, 2006; Ashton, 2009; Kazda et al., 2009). However, there is little research to inform the methods that can support this type of responsive, local, collaborative and consultative health planning (Northridge et al., 2003). Some research justifies the use of decision support systems (DSS) as a tool to support planning for healthy communities. DSS have been found to increase collaboration between stakeholders and communities, improve the accuracy and quality of the decision-making process, and improve the availability of data and information for health decision-makers (Nobre et al., 1997; Cromley & McLafferty, 2002; Waring et al., 2005). Geographic information systems (GIS) have been suggested as an innovative method by which to implement DSS because they promote new ways of thinking about evidence and facilitate a broader understanding of communities. Furthermore, literature has indicated that online environments can have a positive impact on decision-making by enabling access to information by a broader audience (Kingston et al., 2001). However, only limited research has examined the implementation and impact of online DSS in the health planning field. Previous studies have emphasised the lack of effective information management systems and an absence of frameworks to guide the way in which information is used to promote informed decisions in health planning. It has become imperative to develop innovative approaches, frameworks and methods to support health planning. Thus, to address these identified gaps in the knowledge, this study aims to develop a conceptual planning framework for creating healthy communities and examine the impact of DSS in the Logan Beaudesert area. Specifically, the study aims to identify the key elements and domains of information that are needed to develop healthy communities, to develop a conceptual planning framework for creating healthy communities, to collaboratively develop and implement an online GIS-based Health DSS (i.e., HDSS), and to examine the impact of the HDSS on local decision-making processes. The study is based on a real-world case study of a community-based initiative that was established to improve public health outcomes and promote new ways of addressing chronic disease. The study involved the development of an online GIS-based health decision support system (HDSS), which was applied in the Logan Beaudesert region of Queensland, Australia. A planning framework was developed to account for the way in which information could be organised to contribute to a healthy community. The decision support system was developed within a unique settings-based initiative Logan Beaudesert Health Coalition (LBHC) designed to plan and improve the health capacity of Logan Beaudesert area in Queensland, Australia. This setting provided a suitable platform to apply a participatory research design to the development and implementation of the HDSS. Therefore, the HDSS was a pilot study examined the impact of this collaborative process, and the subsequent implementation of the HDSS on the way decision-making was perceived across the LBHC. As for the method, based on a systematic literature review, a comprehensive planning framework for creating healthy communities has been developed. This was followed by using a mixed method design, data were collected through both qualitative and quantitative methods. Specifically, data were collected by adopting a participatory action research (PAR) approach (i.e., PAR intervention) that informed the development and conceptualisation of the HDSS. A pre- and post-design was then used to determine the impact of the HDSS on decision-making. The findings of this study revealed a meaningful framework for organising information to guide planning for healthy communities. This conceptual framework provided a comprehensive system within which to organise existing data. The PAR process was useful in engaging stakeholders and decision-making in the development and implementation of the online GIS-based DSS. Through three PAR cycles, this study resulted in heightened awareness of online GIS-based DSS and openness to its implementation. It resulted in the development of a tailored system (i.e., HDSS) that addressed the local information and planning needs of the LBHC. In addition, the implementation of the DSS resulted in improved decision- making and greater satisfaction with decisions within the LBHC. For example, the study illustrated the culture in which decisions were made before and after the PAR intervention and what improvements have been observed after the application of the HDSS. In general, the findings indicated that decision-making processes are not merely informed (consequent of using the HDSS tool), but they also enhance the overall sense of ‗collaboration‘ in the health planning practice. For example, it was found that PAR intervention had a positive impact on the way decisions were made. The study revealed important features of the HDSS development and implementation process that will contribute to future research. Thus, the overall findings suggest that the HDSS is an effective tool, which would play an important role in the future for significantly improving the health planning practice.
Resumo:
This work proceeds from the assumption that a European environmental information and communication system (EEICS) is already established. In the context of primary users (land-use planners, conservationists, and environmental researchers) we ask what use may be made of the EEICS for building models and tools which is of use in building decision support systems for the land-use planner. The complex task facing the next generation of environmental and forest modellers is described, and a range of relevant modelling approaches are reviewed. These include visualization and GIS; statistical tabulation and database SQL, MDA and OLAP methods. The major problem of noncomparability of the definitions and measures of forest area and timber volume is introduced and the possibility of a model-based solution is considered. The possibility of using an ambitious and challenging biogeochemical modelling approach to understanding and managing European forests sustainably is discussed. It is emphasised that all modern methodological disciplines must be brought to bear, and a heuristic hybrid modelling approach should be used so as to ensure that the benefits of practical empirical modelling approaches are utilised in addition to the scientifically well-founded and holistic ecosystem and environmental modelling. The data and information system required is likely to end up as a grid-based-framework because of the heavy use of computationally intensive model-based facilities.
Resumo:
El sistema de fangs activats és el tractament biològic més àmpliament utilitzat arreu del món per la depuració d'aigües residuals. El seu funcionament depèn de la correcta operació tant del reactor biològic com del decantador secundari. Quan la fase de sedimentació no es realitza correctament, la biomassa no decantada s'escapa amb l'efluent causant un impacte sobre el medi receptor. Els problemes de separació de sòlids, són actualment una de les principals causes d'ineficiència en l'operació dels sistemes de fangs activats arreu del món. Inclouen: bulking filamentós, bulking viscós, escumes biològiques, creixement dispers, flòcul pin-point i desnitrificació incontrolada. L'origen dels problemes de separació generalment es troba en un desequilibri entre les principals comunitats de microorganismes implicades en la sedimentació de la biomassa: els bacteris formadors de flòcul i els bacteris filamentosos. Degut a aquest origen microbiològic, la seva identificació i control no és una tasca fàcil pels caps de planta. Els Sistemes de Suport a la Presa de Decisions basats en el coneixement (KBDSS) són un grup d'eines informàtiques caracteritzades per la seva capacitat de representar coneixement heurístic i tractar grans quantitats de dades. L'objectiu de la present tesi és el desenvolupament i validació d'un KBDSS específicament dissenyat per donar suport als caps de planta en el control dels problemes de separació de sòlids d'orígen microbiològic en els sistemes de fangs activats. Per aconseguir aquest objectiu principal, el KBDSS ha de presentar les següents característiques: (1) la implementació del sistema ha de ser viable i realista per garantir el seu correcte funcionament; (2) el raonament del sistema ha de ser dinàmic i evolutiu per adaptar-se a les necessitats del domini al qual es vol aplicar i (3) el raonament del sistema ha de ser intel·ligent. En primer lloc, a fi de garantir la viabilitat del sistema, s'ha realitzat un estudi a petita escala (Catalunya) que ha permès determinar tant les variables més utilitzades per a la diagnosi i monitorització dels problemes i els mètodes de control més viables, com la detecció de les principals limitacions que el sistema hauria de resoldre. Els resultats d'anteriors aplicacions han demostrat que la principal limitació en el desenvolupament de KBDSSs és l'estructura de la base de coneixement (KB), on es representa tot el coneixement adquirit sobre el domini, juntament amb els processos de raonament a seguir. En el nostre cas, tenint en compte la dinàmica del domini, aquestes limitacions es podrien veure incrementades si aquest disseny no fos òptim. En aquest sentit, s'ha proposat el Domino Model com a eina per dissenyar conceptualment el sistema. Finalment, segons el darrer objectiu referent al seguiment d'un raonament intel·ligent, l'ús d'un Sistema Expert (basat en coneixement expert) i l'ús d'un Sistema de Raonament Basat en Casos (basat en l'experiència) han estat integrats com els principals sistemes intel·ligents encarregats de dur a terme el raonament del KBDSS. Als capítols 5 i 6 respectivament, es presenten el desenvolupament del Sistema Expert dinàmic (ES) i del Sistema de Raonament Basat en Casos temporal, anomenat Sistema de Raonament Basat en Episodis (EBRS). A continuació, al capítol 7, es presenten detalls de la implementació del sistema global (KBDSS) en l'entorn G2. Seguidament, al capítol 8, es mostren els resultats obtinguts durant els 11 mesos de validació del sistema, on aspectes com la precisió, capacitat i utilitat del sistema han estat validats tant experimentalment (prèviament a la implementació) com a partir de la seva implementació real a l'EDAR de Girona. Finalment, al capítol 9 s'enumeren les principals conclusions derivades de la present tesi.
Resumo:
The work presented in this PhD thesis includes various partial studies aimed at developing a decision support system for membrane bioreactor integrated control. The decision support systems (DSS) have as a main goal to facilitate the operation of complex processes due to the multiple variables that are processed. For this reason, the research used has focused on aspects related to nutrient removal, and on the development of indicators or sensors capable of facilitating, automating and controlling the filtration process in an integrated way with the biological processes that taking place. Work has also been done on the design, development, implementation and validation of tools based on the knowledge made available by the automatic control and the supervision of the MBRs
Resumo:
BACKGROUND: The most effective decision support systems are integrated with clinical information systems, such as inpatient and outpatient electronic health records (EHRs) and computerized provider order entry (CPOE) systems. Purpose The goal of this project was to describe and quantify the results of a study of decision support capabilities in Certification Commission for Health Information Technology (CCHIT) certified electronic health record systems. METHODS: The authors conducted a series of interviews with representatives of nine commercially available clinical information systems, evaluating their capabilities against 42 different clinical decision support features. RESULTS: Six of the nine reviewed systems offered all the applicable event-driven, action-oriented, real-time clinical decision support triggers required for initiating clinical decision support interventions. Five of the nine systems could access all the patient-specific data items identified as necessary. Six of the nine systems supported all the intervention types identified as necessary to allow clinical information systems to tailor their interventions based on the severity of the clinical situation and the user's workflow. Only one system supported all the offered choices identified as key to allowing physicians to take action directly from within the alert. Discussion The principal finding relates to system-by-system variability. The best system in our analysis had only a single missing feature (from 42 total) while the worst had eighteen.This dramatic variability in CDS capability among commercially available systems was unexpected and is a cause for concern. CONCLUSIONS: These findings have implications for four distinct constituencies: purchasers of clinical information systems, developers of clinical decision support, vendors of clinical information systems and certification bodies.
Resumo:
This paper discusses how agent technology can be applied to the design of advanced Information Systems for Decision Support. In particular, it describes the different steps and models that are necessary to engineer Decision Support Systems based on a multiagent architecture. The approach is illustrated by a case study in the traffic management domain.