996 resultados para decision errors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdos-Renyi or Barabasi-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article deals with the activity of defining information of hospital systems as fundamental for choosing the type of information systems to be used and also the organizational level to be supported. The use of hospital managing information systems improves the user`s decision -making process by allowing control report generation and following up the procedures made in the hospital as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: to address the social aspects of pregnancy and the views of pregnant women regarding prenatal assistance in Brazil. Design: this qualitative study was focused on describing the Social Representations of prenatal care held by pregnant women. The discourse of the collective subject (DCS) framework was used to analyse the data collected, within the theoretical background of social representations, as proposed and developed by Serge Moscovici. Participants and setting: 21 pregnant women who were users of the publicly funded Brazilian unified health-care system and resided in the area served by its family health programme in a low- to middle-income neighbourhood on the outskirts of Campo Grande, the capital of the state of Mato Grosso do Sul, in southwestern Brazil. Data were collected by conducting in-depth, face-to-face interviews from January to October 2006. Findings: all participants were married. Formal education of the participants was less than five years in four cases, between five and eight years in six cases, and greater than 11 years in 10 cases. Nine participants had informal jobs and earned up to US$ 200 per month, four paricipants had administrative jobs and earned over US$ 500 per month, and eight participants did not work. No specific racial/ethnic background predominated. Lack of adherence to prenatal care allowed for the identification of two DCS themes: `organisation of prenatal care services` and `lifestyle features`. Key conclusions: the respondents were found to have negative feelings about pregnancy which manifest as many fears, including the fear of harming their children`s health, of being punished during labour, and of being reprimanded by health-care professionals for overlooking their prenatal care, in addition to the insecurity felt towards the infant and self. Implications for practice: the findings reveal that communication between pregnant women and healthcare professionals has been ineffective and that prenatal care has not been effective for the group interviewed-features that are likely to be found among other low- to middle-income groups living elsewhere in Brazil. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medication administration errors (MAE) are the most frequent kind of medication errors. Errors with antimicrobial drugs (AD) are relevant because they may interfere inpatient safety and in the development of microbial resistance. The aim of this study is to analyze the AD errors detected in a Brazilian multicentric study of MAE. It was a devcriptive and explorotory study carried out in clinical units in five Brazilian teaching hospitals. The hospitals were investigated during 30 days. MAE were detected by observation technique. MAE were classified in categories: wrong route(WR), wrong patient(WP), wrong dose(WD) wrong time (WT) and unordered drug (UD). AD with MA E were classified by Anatomical-Therapeutical-Chemical Classification System. AD with narrow therapeutic index (NTI) wet-e identified A descriptive statistical analysis was performed using SPSS version 11.5 software. A total of 1500 errors were observed, 277 (18.5%) of them were error with AD. The hopes of AD error were: WT87.7%, QD 6.9%, WR 1.5%, UD 3.2% and WP 0.7%. The number of AD found was 36. The mostly ATC class were fluoroquinolones 13.9%, combinations of penicillin 13.9%, macrolides 8.3% and third-generation cephalosporines 5.6%. The parenteral drug dosage form was associated with 55.6% of AD. 16.7% of AD were NTI. 47.4% of WD and 21.8% WT were with NTI drugs. This study shows that these errors should be considered potential areas for improvement in the medication process and patient safety plus there is requirement to develop rational drug use of AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an automated system for the measurement of form errors of mechanical components using an industrial robot. A three-probe error separation technique was employed to allow decoupling between the measured form error and errors introduced by the robotic system. A mathematical model of the measuring system was developed to provide inspection results by means of the solution of a system of linear equations. A new self-calibration procedure, which employs redundant data from several runs, minimizes the influence of probes zero-adjustment on the final result. Experimental tests applied to the measurement of straightness errors of mechanical components were accomplished and demonstrated the effectiveness of the employed methodology. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the presence of financial constraint in the investment decisions of 367 Brazilian firms from 1997 to 2004, using a Bayesian econometric model with group-varying parameters. The motivation for this paper is the use of clustering techniques to group firms in a totally endogenous form. In order to classify the firms we used a hybrid clustering method, that is, hierarchical and non-hierarchical clustering techniques jointly. To estimate the parameters a Bayesian approach was considered. Prior distributions were assumed for the parameters, classifying the model in random or fixed effects. Ordinate predictive density criterion was used to select the model providing a better prediction. We tested thirty models and the better prediction considers the presence of 2 groups in the sample, assuming the fixed effect model with a Student t distribution with 20 degrees of freedom for the error. The results indicate robustness in the identification of financial constraint when the firms are classified by the clustering techniques. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multicriteria power engineering problems. The application of the approach conforms to the principle of guaranteed result and provides constructive lines in computationally effective obtaining harmonious solutions on the basis of solving associated maxmin problems. The presented results are universally applicable and are already being used to solve diverse classes of power engineering problems. It is illustrated by considering problems of power and energy shortage allocation, power system operation, optimization of network configuration in distribution systems, and energetically effective voltage control in distribution systems. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper proposes a flexible consensus scheme for group decision making, which allows one to obtain a consistent collective opinion, from information provided by each expert in terms of multigranular fuzzy estimates. It is based on a linguistic hierarchical model with multigranular sets of linguistic terms, and the choice of the most suitable set is a prerogative of each expert. From the human viewpoint, using such model is advantageous, since it permits each expert to utilize linguistic terms that reflect more adequately the level of uncertainty intrinsic to his evaluation. From the operational viewpoint, the advantage of using such model lies in the fact that it allows one to express the linguistic information in a unique domain, without losses of information, during the discussion process. The proposed consensus scheme supposes that the moderator can interfere in the discussion process in different ways. The intervention can be a request to any expert to update his opinion or can be the adjustment of the weight of each expert`s opinion. An optimal adjustment can be achieved through the execution of an optimization procedure that searches for the weights that maximize a corresponding soft consensus index. In order to demonstrate the usefulness of the presented consensus scheme, a technique for multicriteria analysis, based on fuzzy preference relation modeling, is utilized for solving a hypothetical enterprise strategy planning problem, generated with the use of the Balanced Scorecard methodology. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of research related to multicriteria decision making under information uncertainty. The Bell-man-Zadeh approach to decision making in a fuzzy environment is utilized for analyzing multicriteria optimization models (< X, M > models) under deterministic information. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. This circumstance permits one to generalize the classic approach to considering the uncertainty of quantitative information (based on constructing and analyzing payoff matrices reflecting effects which can be obtained for different combinations of solution alternatives and the so-called states of nature) in monocriteria decision making to multicriteria problems. Considering that the uncertainty of information can produce considerable decision uncertainty regions, the resolving capacity of this generalization does not always permit one to obtain unique solutions. Taking this into account, a proposed general scheme of multicriteria decision making under information uncertainty also includes the construction and analysis of the so-called < X, R > models (which contain fuzzy preference relations as criteria of optimality) as a means for the subsequent contraction of the decision uncertainty regions. The paper results are of a universal character and are illustrated by a simple example. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150 MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents new insights and novel algorithms for strategy selection in sequential decision making with partially ordered preferences; that is, where some strategies may be incomparable with respect to expected utility. We assume that incomparability amongst strategies is caused by indeterminacy/imprecision in probability values. We investigate six criteria for consequentialist strategy selection: Gamma-Maximin, Gamma-Maximax, Gamma-Maximix, Interval Dominance, Maximality and E-admissibility. We focus on the popular decision tree and influence diagram representations. Algorithms resort to linear/multilinear programming; we describe implementation and experiments. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The procedure of on-line process control by attributes, known as Taguchi`s on-line process control, consists of inspecting the mth item (a single item) at every m produced items and deciding, at each inspection, whether the fraction of conforming items was reduced or not. If the inspected item is nonconforming, the production is stopped for adjustment. As the inspection system can be subject to diagnosis errors, one develops a probabilistic model that classifies repeatedly the examined item until a conforming or b non-conforming classification is observed. The first event that occurs (a conforming classifications or b non-conforming classifications) determines the final classification of the examined item. Proprieties of an ergodic Markov chain were used to get the expression of average cost of the system of control, which can be optimized by three parameters: the sampling interval of the inspections (m); the number of repeated conforming classifications (a); and the number of repeated non-conforming classifications (b). The optimum design is compared with two alternative approaches: the first one consists of a simple preventive policy. The production system is adjusted at every n produced items (no inspection is performed). The second classifies the examined item repeatedly r (fixed) times and considers it conforming if most classification results are conforming. Results indicate that the current proposal performs better than the procedure that fixes the number of repeated classifications and classifies the examined item as conforming if most classifications were conforming. On the other hand, the preventive policy can be averagely the most economical alternative rather than those ones that require inspection depending on the degree of errors and costs. A numerical example illustrates the proposed procedure. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The procedure for online process control by attributes consists of inspecting a single item at every m produced items. It is decided on the basis of the inspection result whether the process is in-control (the conforming fraction is stable) or out-of-control (the conforming fraction is decreased, for example). Most articles about online process control have cited the stoppage of the production process for an adjustment when the inspected item is non-conforming (then the production is restarted in-control, here denominated as corrective adjustment). Moreover, the articles related to this subject do not present semi-economical designs (which may yield high quantities of non-conforming items), as they do not include a policy of preventive adjustments (in such case no item is inspected), which can be more economical, mainly if the inspected item can be misclassified. In this article, the possibility of preventive or corrective adjustments in the process is decided at every m produced item. If a preventive adjustment is decided upon, then no item is inspected. On the contrary, the m-th item is inspected; if it conforms, the production goes on, otherwise, an adjustment takes place and the process restarts in-control. This approach is economically feasible for some practical situations and the parameters of the proposed procedure are determined minimizing an average cost function subject to some statistical restrictions (for example, to assure a minimal levelfixed in advanceof conforming items in the production process). Numerical examples illustrate the proposal.