855 resultados para decision analysis
Resumo:
The Multicriteria decision analysis is a tool to support decision-making in the identification of areas with the utmost beekeeping potential. This paper design a GIS multicriteria approach to assess the beekeeping potential. The development of a conceptual model structure requires the participation of stakeholders and experts in that process. The spatial Multicriteria Decision Analysis (MCDA) allowed defining the potential beekeeping map. The resulting maps can be used by the beekeepers associations to easily select the more suitable areas for the apiaries location or relocation and avoid prohibited areas by legal requirements.
Resumo:
The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.
Resumo:
Socio-economic and demographic changes among family forest owners and demands for versatile forestry decision aid motivated this study, which sought grounds for owner-driven forest planning. Finnish family forest owners’ forest-related decision making was analyzed in two interview-based qualitative studies, the main findings of which were surveyed quantitatively. Thereafter, a scheme for adaptively mixing methods in individually tailored decision support processes was constructed. The first study assessed owners’ decision-making strategies by examining varying levels of the sharing of decision-making power and the desire to learn. Five decision-making modes – trusting, learning, managing, pondering, and decisive – were discerned and discussed against conformable decision-aid approaches. The second study conceptualized smooth communication and assessed emotional, practical, and institutional boosters of and barriers to such smoothness in communicative decision support. The results emphasize the roles of trust, comprehension, and contextual services in owners’ communicative decision making. In the third study, a questionnaire tool to measure owners’ attitudes towards communicative planning was constructed by using trusting, learning, and decisive dimensions. Through a multivariate analysis of survey data, three owner groups were identified as fusions of the original decision-making modes: trusting learners (53%), decisive learners (27%), and decisive managers (20%). Differently weighted communicative services are recommended for these compound wishes. The findings of the studies above were synthesized in a form of adaptive decision analysis (ADA), which allows and encourages the decision-maker (owner) to make deliberate choices concerning the phases of a decision aid (planning) process. The ADA model relies on adaptability and feedback management, which foster smooth communication with the owner and (inter-)organizational learning of the planning institution(s). The summarized results indicate that recognizing the communication-related amenity values of family forest owners may be crucial in developing planning and extension services. It is therefore recommended that owners, root-level planners, consultation professionals, and pragmatic researchers collaboratively continue to seek stable change.
Resumo:
Few issues confronting coastal resource managers are as divisive or difficult to manage as regulating the construction of private recreational docks and piers associated with residential development. State resource managers face a growing population intent on living on or near the coast, coupled with an increasing desire to have immediate access to the water by private docks or piers. (PDF contains 69 pages)
Resumo:
Real decision makers exhibit significant shortcomings in the generation of objectives for decisions that they face. Prior research has illustrated the magnitude of this shortcoming but not its causes. In this paper, we identify two distinct impediments to the generation of decision objectives: not thinking broadly enough about the range of relevant objectives, and not thinking deeply enough to articulate every objective within the range that is considered. To test these explanations and explore ways of stimulating a more comprehensive set of objectives, we present three experiments involving a variety of interventions: the provision of sample objectives, organization of objectives by category, and direct challenges to do better, with or without a warning that important objectives are missing. The use of category names and direct challenges with a warning both led to improvements in the quantity of objectives generated without impacting their quality; other interventions yielded less improvement. We conclude by discussing the relevance of our findings to decision analysis and offering prescriptive implications for the elicitation of decision objectives. © 2010 INFORMS.
Resumo:
BACKGROUND: Diagnostic imaging represents the fastest growing segment of costs in the US health system. This study investigated the cost-effectiveness of alternative diagnostic approaches to meniscus tears of the knee, a highly prevalent disease that traditionally relies on MRI as part of the diagnostic strategy. PURPOSE: To identify the most efficient strategy for the diagnosis of meniscus tears. STUDY DESIGN: Economic and decision analysis; Level of evidence, 1. METHODS: A simple-decision model run as a cost-utility analysis was constructed to assess the value added by MRI in various combinations with patient history and physical examination (H&P). The model examined traumatic and degenerative tears in 2 distinct settings: primary care and orthopaedic sports medicine clinic. Strategies were compared using the incremental cost-effectiveness ratio (ICER). RESULTS: In both practice settings, H&P alone was widely preferred for degenerative meniscus tears. Performing MRI to confirm a positive H&P was preferred for traumatic tears in both practice settings, with a willingness to pay of less than US$50,000 per quality-adjusted life-year. Performing an MRI for all patients was not preferred in any reasonable clinical scenario. The prevalence of a meniscus tear in a clinician's patient population was influential. For traumatic tears, MRI to confirm a positive H&P was preferred when prevalence was less than 46.7%, with H&P preferred above that. For degenerative tears, H&P was preferred until the prevalence reaches 74.2%, and then MRI to confirm a negative was the preferred strategy. In both settings, MRI to confirm positive physical examination led to more than a 10-fold lower rate of unnecessary surgeries than did any other strategy, while MRI to confirm negative physical examination led to a 2.08 and 2.26 higher rate than H&P alone in primary care and orthopaedic clinics, respectively. CONCLUSION: For all practitioners, H&P is the preferred strategy for the suspected degenerative meniscus tear. An MRI to confirm a positive H&P is preferred for traumatic tears for all practitioners. Consideration should be given to implementing alternative diagnostic strategies as well as enhancing provider education in physical examination skills to improve the reliability of H&P as a diagnostic test. CLINICAL RELEVANCE: Alternative diagnostic strategies that do not include the use of MRI may result in decreased health care costs without harm to the patient and could possibly reduce unnecessary procedures.
Resumo:
Tese de dout., Filosofia, Department of Management Science, University of Strathclyde, 2004
Resumo:
Geographic information systems give us the possibility to analyze, produce, and edit geographic information. Furthermore, these systems fall short on the analysis and support of complex spatial problems. Therefore, when a spatial problem, like land use management, requires a multi-criteria perspective, multi-criteria decision analysis is placed into spatial decision support systems. The analytic hierarchy process is one of many multi-criteria decision analysis methods that can be used to support these complex problems. Using its capabilities we try to develop a spatial decision support system, to help land use management. Land use management can undertake a broad spectrum of spatial decision problems. The developed decision support system had to accept as input, various formats and types of data, raster or vector format, and the vector could be polygon line or point type. The support system was designed to perform its analysis for the Zambezi river Valley in Mozambique, the study area. The possible solutions for the emerging problems had to cover the entire region. This required the system to process large sets of data, and constantly adjust to new problems’ needs. The developed decision support system, is able to process thousands of alternatives using the analytical hierarchy process, and produce an output suitability map for the problems faced.
Resumo:
Objective: To To conduct a cost-effectiveness analysis of a universal childhood hepatitis A vaccination program in Brazil. Methods: An age and time-dependent dynamic model was developed to estimate the incidence of hepatitis A for 24 years. The analysis was run separately according to the pattern of regional endemicity, one for South + Southeast (low endemicity) and one for the North + Northeast + Midwest (intermediate endemicity). The decision analysis model compared universal childhood vaccination with current program of vaccinating high risk individuals. Epidemiologic and cost estimates were based on data from a nationwide seroprevalence survey of viral hepatitis, primary data collection, National Health Information Systems and literature. The analysis was conducted from both the health system and societal perspectives. Costs are expressed in 2008 Brazilian currency (Real). Results: A universal immunization program would have a significant impact on disease epidemiology in all regions, resulting in 64% reduction in the number of cases of icteric hepatitis, 59% reduction in deaths for the disease and a 62% decrease of life years lost, in a national perspective. With a vaccine price of R$16.89 (US$7.23) per dose, vaccination against hepatitis A was a cost-saving strategy in the low and intermediate endemicity regions and in Brazil as a whole from both health system and society perspective. Results were most sensitive to the frequency of icteric hepatitis, ambulatory care and vaccine costs. Conclusions: Universal childhood vaccination program against hepatitis A could be a cost-saving strategy in all regions of Brazil. These results are useful for the Brazilian government for vaccine related decisions and for monitoring population impact if the vaccine is included in the National Immunization Program. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the effects of patient variables (physical and cognitive disability, significant others' preference and social support) on nurses' nursing home placement decision-making and explored nurses' participation in the decision-making process.^ The study was conducted in a hospital in Texas. A sample of registered nurses on units that refer patients for nursing home placement were asked to review a series of vignettes describing elderly patients that differed in terms of the study variables and indicate the extent to which they agreed with nursing home placement on a five-point Likert scale. The vignettes were judged to have good content validity by a group of five colleagues (expert consultants) and test-retest reliability based on the Pearson correlation coefficient was satisfactory (average of.75) across all vignettes.^ The study tested the following hypotheses: Nurses have more of a propensity to recommend placement when (1) patients have severe physical disabilities; (2) patients have severe cognitive disabilities; (3) it is the significant others' preference; and (4) patients have no social support nor alternative services. Other hypotheses were that (5) a nurse's characteristics and extent of participation will not have a significant effect on their placement decision; and (6) a patient's social support is the most important, single factor, and the combination of factors of severe physical and cognitive disability, significant others' preference, and no social support nor alternative services will be the most important set of predictors of a nurse's placement decision.^ Analysis of Variance (ANOVA) was used to analyze the relationships implied in the hypothesis. A series of one-way ANOVA (bivariate analyses) of the main effects supported hypotheses one-five.^ Overall, the n-way ANOVA (multivariate analyses) of the main effects confirmed that social support was the most important single factor controlling for other variables. The 4-way interaction model confirmed that the most predictive combination of patient characteristics were severe physical and cognitive disability, no social support and the significant others did not desire placement. These analyses provided an understanding of the importance of the influence of specific patient variables on nurses' recommendations regarding placement. ^
Resumo:
Health care providers face the problem of trying to make decisions with inadequate information and also with an overload of (often contradictory) information. Physicians often choose treatment long before they know which disease is present. Indeed, uncertainty is intrinsic to the practice of medicine. Decision analysis can help physicians structure and work through a medical decision problem, and can provide reassurance that decisions are rational and consistent with the beliefs and preferences of other physicians and patients. ^ The primary purpose of this research project is to develop the theory, methods, techniques and tools necessary for designing and implementing a system to support solving medical decision problems. A case study involving “abdominal pain” serves as a prototype for implementing the system. The research, however, focuses on a generic class of problems and aims at covering theoretical as well as practical aspects of the system developed. ^ The main contributions of this research are: (1) bridging the gap between the statistical approach and the knowledge-based (expert) approach to medical decision making; (2) linking a collection of methods, techniques and tools together to allow for the design of a medical decision support system, based on a framework that involves the Analytic Network Process (ANP), the generalization of the Analytic Hierarchy Process (AHP) to dependence and feedback, for problems involving diagnosis and treatment; (3) enhancing the representation and manipulation of uncertainty in the ANP framework by incorporating group consensus weights; and (4) developing a computer program to assist in the implementation of the system. ^
Resumo:
The selection of metrics for ecosystem restoration programs is critical for improving the quality of monitoring programs and characterizing project success. Moreover it is oftentimes very difficult to balance the importance of multiple ecological, social, and economical metrics. Metric selection process is a complex and must simultaneously take into account monitoring data, environmental models, socio-economic considerations, and stakeholder interests. We propose multicriteria decision analysis (MCDA) methods, broadly defined, for the selection of optimal sets of metrics to enhance evaluation of ecosystem restoration alternatives. Two MCDA methods, a multiattribute utility analysis (MAUT), and a probabilistic multicriteria acceptability analysis (ProMAA), are applied and compared for a hypothetical case study of a river restoration involving multiple stakeholders. Overall, the MCDA results in a systematic, unbiased, and transparent solution, informing restoration alternatives evaluation. The two methods provide comparable results in terms of selected metrics. However, because ProMAA can consider probability distributions for weights and utility values of metrics for each criteria, it is suggested as the best option if data uncertainty is high. Despite the increase in complexity in the metric selection process, MCDA improves upon the current ad-hoc decision practice based on the consultations with stakeholders and experts, and encourages transparent and quantitative aggregation of data and judgement, increasing the transparency of decision making in restoration projects. We believe that MCDA can enhance the overall sustainability of ecosystem by enhancing both ecological and societal needs.
Resumo:
In the mid-long-term after a nuclear accident, the contamination of drinking water sources, fish and other aquatic foodstuffs, irrigation supplies and people?s exposure during recreational activities may create considerable public concern, even though dose assessment may in certain situations indicate lesser importance than for other sources, as clearly experienced in the aftermath of past accidents. In such circumstances there are a number of available countermeasure options, ranging from specific chemical treatment of lakes to bans on fish ingestion or on the use of water for crop irrigation. The potential actions can be broadly grouped into four main categories, chemical, biological, physical and social. In some cases a combination of actions may be the optimal strategy and a decision support system (DSS) like MOIRA-PLUS can be of great help to optimise a decision. A further option is of course not to take any remedial actions, although this may also have significant socio-economic repercussions which should be adequately evaluated. MOIRA-PLUS is designed to allow for a reliable assessment of the long-term evolution of the radiological situation and of feasible alternative rehabilitation strategies, including an objective evaluation of their social, economic and ecological impacts in a rational and comprehensive manner. MOIRA-PLUS also features a decision analysis methodology, making use of multi-attribute analysis, which can take into account the preferences and needs of different types of stakeholders. The main functions and elements of the system are described summarily. Also the conclusions from end-user?s experiences with the system are discussed, including exercises involving the organizations responsible for emergency management and the affected services, as well as different local and regional stakeholders. MOIRAPLUS has proven to be a mature system, user friendly and relatively easy to set up. It can help to better decisionmaking by enabling a realistic evaluation of the complete impacts of possible recovery strategies. Also, the interaction with stakeholders has allowed identifying improvements of the system that have been recently implemented.
Resumo:
Geologic storage of carbon dioxide (CO2) has been proposed as a viable means for reducing anthropogenic CO2 emissions. Once injection begins, a program for measurement, monitoring, and verification (MMV) of CO2 distribution is required in order to: a) research key features, effects and processes needed for risk assessment; b) manage the injection process; c) delineate and identify leakage risk and surface escape; d) provide early warnings of failure near the reservoir; and f) verify storage for accounting and crediting. The selection of the methodology of monitoring (characterization of site and control and verification in the post-injection phase) is influenced by economic and technological variables. Multiple Criteria Decision Making (MCDM) refers to a methodology developed for making decisions in the presence of multiple criteria. MCDM as a discipline has only a relatively short history of 40 years, and it has been closely related to advancements on computer technology. Evaluation methods and multicriteria decisions include the selection of a set of feasible alternatives, the simultaneous optimization of several objective functions, and a decision-making process and evaluation procedures that must be rational and consistent. The application of a mathematical model of decision-making will help to find the best solution, establishing the mechanisms to facilitate the management of information generated by number of disciplines of knowledge. Those problems in which decision alternatives are finite are called Discrete Multicriteria Decision problems. Such problems are most common in reality and this case scenario will be applied in solving the problem of site selection for storing CO2. Discrete MCDM is used to assess and decide on issues that by nature or design support a finite number of alternative solutions. Recently, Multicriteria Decision Analysis has been applied to hierarchy policy incentives for CCS, to assess the role of CCS, and to select potential areas which could be suitable to store. For those reasons, MCDM have been considered in the monitoring phase of CO2 storage, in order to select suitable technologies which could be techno-economical viable. In this paper, we identify techniques of gas measurements in subsurface which are currently applying in the phase of characterization (pre-injection); MCDM will help decision-makers to hierarchy the most suitable technique which fit the purpose to monitor the specific physic-chemical parameter.