984 resultados para data dispersal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many mammals social organization promotes genetic structuring, which can be influenced by the dispersal pattern of the species. We analyzed the population genetic structure and dispersal of white-lipped peccaries (Tayassu pecan) from the Pantanal, Brazil. We genotyped 100 individuals at 7 microsatellite loci from 2 adjacent locations with no obvious geographic barrier between them. We found a significant but low F(ST) value, and the Bayesian analysis indicated a unique cluster. No significant differences were observed between mean assignment indices of resident males and females from both locations, and the probability of being born at the location sampled of > 30% of the individuals analyzed was lower than average. Mean relatedness between resident female, male, and opposite-sex pairs was not statistically different in both locations. These results suggest a low degree of genetic differentiation between the locations analyzed, and dispersal by both sexes (contrary to the predicted male-biased dispersal of most mammalian species).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To assess the geographical variation in the relative importance of vertebrates, and more specifically of birds and mammals, as seed dispersal agents in forest communities, and to evaluate the influence of geographical and climatic factors on the observed trends.Location One hundred and thirty-five forest communities in the Brazilian Atlantic forest.Methods We collected data on dispersal modes for 2292 woody species. By combining species x site with species x trait matrices, we obtained the percentages of endozoochory, ornithochory, mastozoochory and the mean fruit diameter for the local forest communities. We used Spearman's correlation to assess bivariate relationships between variables. Subsequently, we performed paired t-tests to verify if variations in frequency of dispersal modes and mean fruit diameter were influenced by altitude or temperature. Then, we applied multiple linear regressions to evaluate the effect of geographical and climatic variables on variation in the relative frequency of dispersal modes and mean fruit diameter across communities.Results We found no consistent latitudinal or longitudinal trend in the percentage of vertebrate-dispersed species, neither bird- nor mammal-dispersed species along the Atlantic forest. Endozoochory was affected chiefly by annual mean rainfall, increasing towards moister sites. Forest communities located at higher altitudes had a higher percentage of bird-dispersed species. Even when sites with identical values of annual mean temperature were compared, altitude had a positive effect on ornithochory. Conversely, we found a higher percentage of mammal-dispersed species in warmer forests, even when locations at the same altitudinal belts were contrasted. Fruit diameter was clearly related to altitude, decreasing towards higher elevations.Main conclusions This is the first analysis of a large data set on dispersal syndromes in tropical forest communities. Our findings support the hypotheses that: (1) geographical variation in the relative number of fleshy fruit species is mainly driven by moisture conditions and is relatively independent of geographical location, and (2) broad-scale trends in fruit size correspond to geographical variation in the relative importance of mammals and birds as seed dispersal agents at the community level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data of seed dispersal and germination of the studied species are presented, comparing both observations from the wild and nursery. Fruits were collected from Carlos Botelho State Park (24 degrees 44' to 24 degrees 03'S, 47 degrees 46' to 48 degrees 10'W), south of São Paulo State, Brazil. O. catharinensis had low germination percentage, both in the wild and in nursery, and did not tolerate seed storage at low temperature. In nursery, diaspores with removed mesocarp of E. paniculata presented greater germination than those in entire fruits. The high levels of seedling mortality beneath mother-trees of C. moschata, when in comparison to those observed to established seedlings from diaspores dispersed by muriquis (Brachyteles arachnoides E. Geoffroy 1806, Cebidae, Primates), allied to the absence of juveniles in the understory, are in accord with the escape model of Janzen-Connel. In nursery, diaspores of C. moschata dispersed by the primates had greater germination, in smaller time, than those collected from mother-trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the food supply flnishes, or when the larvae of blowflies complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as post-feeding larval dispersal. Based on experimental data of the Initial and final configuration of the dispersion, the reproduction of such spatio-temporal behavior is achieved here by means of the evolutionary search for cellular automata with a distinct transition rule associated with each cell, also known as a nonuniform cellular automata, and with two states per cell in the lattice. Two-dimensional regular lattices and multivalued states will be considered and a practical question is the necessity of discovering a proper set of transition rules. Given that the number of rules is related to the number of cells in the lattice, the search space is very large and an evolution strategy is then considered to optimize the parameters of the transition rules, with two transition rules per cell. As the parameters to be optimized admit a physical interpretation, the obtained computational model can be analyzed to raise some hypothetical explanation of the observed spatiotemporal behavior. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The movement patterns of males, females and juveniles of lekking species often differ due to differences in the commitment to lek activities, which may lead to differences in the spatial distribution and dispersal distances of seeds they eat. By sampling seeds in three lek and non-lek areas of the white-bearded manakin (Manacus manacus), we tested whether this lekking species increased the abundance and species richness of seeds in lek areas and, at a finer scale, in 21 displaying courts within lek areas. Combining data on seed defecation or regurgitation rates by free-ranging individuals, the number of seeds in droppings or regurgitations of mist-netted birds, and the distances travelled by birds equipped with radio-transmitters, we estimated the potential spatial distribution of seeds generated by six resident males and six females or juveniles during the morning peak of lek activity and when lek activity decreased in the afternoon. There was no difference in the species richness (46 and 44 morphospecies, respectively) and abundance of seeds (15.4 ± 7.3 seeds and 14.0 ± 1.1 seeds, respectively) between lek and non-lek areas. Within leks both parameters increased in courts (45 spp., 17.6 ± 14 seeds) compared with non-court sites (22 spp., 1.9 ± 1.8 seeds), likely as a consequence of the longer time spent by resident males in perches in or near display courts. Distances moved by juveniles and females per 60-min period (183 ± 272 m) were greater than resident males (42.6 ± 22.0 m) in the mornings, while the opposite happened in the afternoons (55.2 ± 40.7 m and 157 ± 105 m, respectively). We conclude that the spatial aggregation of seeds in lek areas of M. manacus occurs at the court level, and the spatial distribution of deposited seeds varies with manakin lekking status and the daily period of foraging. © Cambridge University Press 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seed dispersal effectiveness (SDE) is a conceptual framework that aims at quantifying the contribution of seed dispersal vectors to plant fitness. While it is well recognized that diplochorous dispersal systems, characterized by two successive dispersal steps performed by two different vectors (Phase I=primary seed dispersal and Phase II=secondary seed dispersal) which are common in temperate and tropical regions, little attention has been given to distinguishing the relative contribution of one-phase and two-phase dispersal to overall SDE. This conceptual gap probably results from the lack of a clear methodology to include Phase II dispersal into the calculation of SDE and to quantify its relative contribution. We propose a method to evaluate the relative contribution of one-phase and two-phase dispersal to SDE and determine whether two seed dispersers are better than one. To do so, we used the SDE landscape and an extension of the SDE landscape, the Phase II effect landscape, which measures the direction and magnitude of the Phase II dispersal effect on overall SDE. We used simulated and empirical data from a diplochorous dispersal system in the Peruvian Amazon to illustrate this new approach. Our approach provides the relative contribution of one-phase SDE (SDE1) and two-phase SDE (SDE2) to overall SDE and quantifies how much SDE changes with the addition of Phase II dispersal. Considering that the seed dispersal process is context dependent so that Phase II depends on Phase I, we predict the possible range of variation of SDE according to the variation of the probability of Phase II dispersal. In our specific study system composed of two primate species as primary dispersal vectors and different species of dung beetles as secondary dispersal vectors, the relative contribution of SDE1 and SDE2 to overall SDE varied between plant species. We discuss the context dependency of the Phase II dispersal and the potential applications of our approach. This extension to the conceptual framework of SDE enables quantitative evaluation of the effect of Phase II dispersal on plant fitness and can be easily adapted to other biotic and/or abiotic diplochorous dispersal systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania. Methods Drosera meristocaulis was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem. Key Results The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n = approx. 32–36 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 7–8 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand. Conclusions The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prior studies of phylogenetic relationships among phocoenids based on morphology and molecular sequence data conflict and yield unresolved relationships among species. This study evaluates a comprehensive set of cranial, postcranial, and soft anatomical characters to infer interrelationships among extant species and several well-known fossil phocoenids, using two different methods to analyze polymorphic data: polymorphic coding and frequency step matrix. Our phylogenetic results confirmed phocoenid monophyly. The division of Phocoenidae into two subfamilies previously proposed was rejected, as well as the alliance of the two extinct genera Salumiphocaena and Piscolithax with Phocoena dioptrica and Phocoenoides dalli. Extinct phocoenids are basal to all extant species. We also examined the origin and distribution of porpoises within the context of this phylogenetic framework. Phocoenid phylogeny together with available geologic evidence suggests that the early history of phocoenids was centered in the North Pacific during the middle Miocene, with subsequent dispersal into the southern hemisphere in the middle Pliocene. A cooling period in the Pleistocene allowed dispersal of the southern ancestor of Phocoena sinusinto the North Pacific (Gulf of California).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Townsend’s big-eared bat, Corynorhinus townsendii, is distributed broadly across western North America and in two isolated, endangered populations in central and eastern United States. There are five subspecies of C. townsendii; C. t. pallescens, C. t. australis, C. t. townsendii, C. t. ingens, and C. t. virginianus with varying degrees of concern over the conservation status of each. The aim of this study was to use mitochondrial and microsatellite DNA data to examine genetic diversity, population differentiation, and dispersal of three C. townsendii subspecies. C. t. virginianus is found in isolated populations in the eastern United States and was listed as endangered under the Endangered Species Act in 1979. Concern also exists about declining populations of two western subspecies, C. t. pallescens and C. t. townsendii. Using a comparative approach, estimates of the genetic diversity within populations of the endangered subspecies, C. t. virginianus, were found to be significantly lower than within populations of the two western subspecies. Further, both classes of molecular markers revealed significant differentiation among regional populations of C. t. virginianus with most genetic diversity distributed among populations. Genetic diversity was not significantly different between C. t. townsendii and C. t. pallescens. Some populations of C. t. townsendii are not genetically differentiated from populations of C. t. pallescens in areas of sympatry. For the western subspecies gene flow appears to occur primarily through male dispersal. Finally, geographic regions representing significantly differentiated and genetically unique populations of C. townsendii virginianus are recognized as distinct evolutionary significant units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists’ interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (λmax) was consistent with the experiments. Possible explanations for this discrepancy are discussed. Includes 4 supplemental files.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stage-structured models that integrate demography and dispersal can be used to identify points in the life cycle with large effects on rates of population spatial spread, information that is vital in the development of containment strategies for invasive species. Current challenges in the application of these tools include: (1) accounting for large uncertainty in model parameters, which may violate assumptions of ‘‘local’’ perturbation metrics such as sensitivities and elasticities, and (2) forecasting not only asymptotic rates of spatial spread, as is usually done, but also transient spatial dynamics in the early stages of invasion. We developed an invasion model for the Diaprepes root weevil (DRW; Diaprepes abbreviatus [Coleoptera: Curculionidae]), a generalist herbivore that has invaded citrus-growing regions of the United States. We synthesized data on DRW demography and dispersal and generated predictions for asymptotic and transient peak invasion speeds, accounting for parameter uncertainty. We quantified the contributions of each parameter toward invasion speed using a ‘‘global’’ perturbation analysis, and we contrasted parameter contributions during the transient and asymptotic phases. We found that the asymptotic invasion speed was 0.02–0.028 km/week, although the transient peak invasion speed (0.03– 0.045 km/week) was significantly greater. Both asymptotic and transient invasions speeds were most responsive to weevil dispersal distances. However, demographic parameters that had large effects on asymptotic speed (e.g., survival of early-instar larvae) had little effect on transient speed. Comparison of the global analysis with lower-level elasticities indicated that local perturbation analysis would have generated unreliable predictions for the responsiveness of invasion speed to underlying parameters. Observed range expansion in southern Florida (1992–2006) was significantly lower than the invasion speed predicted by the model. Possible causes of this mismatch include overestimation of dispersal distances, demographic rates, and spatiotemporal variation in parameter values. This study demonstrates that, when parameter uncertainty is large, as is often the case, global perturbation analyses are needed to identify which points in the life cycle should be targets of management. Our results also suggest that effective strategies for reducing spread during the asymptotic phase may have little effect during the transient phase. Includes Appendix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iphisa elegans Gray, 1851 is a ground-dwelling lizard widespread over Amazonia that displays a broadly conserved external morphology over its range. This wide geographical distribution and conservation of body form contrasts with the expected poor dispersal ability of the species, the tumultuous past of Amazonia, and the previously documented prevalence of cryptic species in widespread terrestrial organisms in this region. Here we investigate this homogeneity by examining hemipenial morphology and conducting phylogenetic analyses of mitochondrial (CYTB) and nuclear (C-MOS) DNA sequence data from 49 individuals sampled across Amazonia. We detected remarkable variation in hemipenial morphology within this species, with multiple cases of sympatric occurrence of distinct hemipenial morphotypes. Phylogenetic analyses revealed highly divergent lineages corroborating the patterns suggested by the hemipenial morphotypes, including co-occurrence of different lineages. The degrees of genetic and morphological distinctness, as well as instances of sympatry among mtDNA lineages/morphotypes without nuDNA allele sharing, suggest that I. elegans is a complex of cryptic species. An extensive and integrative taxonomic revision of the I. elegans complex throughout its wide geographical range is needed. (c) 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166, 361376.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania. was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem. The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n approx. 3236 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 78 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand. The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollination and seed dispersal are important ecological processes for the regeneration of plant populations and both vectors for gene exchange between plant populations. For my thesis, I studied the pollination ecology of the South African tree Commiphora harveyi (Burseraceae) and compared it with C. guillauminii from Madagascar. Both species have low visitation rates and a low number of pollinating insect species, resulting in a low fruit set. While their pollination ecology is very similar, they differ in their seed dispersal with a low seed dispersal rate in the Malagasy and a high seed dispersal rate in the South African species. This should be reflected in a stronger genetic differentiation among populations in the Malagasy than in the South African species. My results, based on AFLP markers, contradict these expectations, the overall differentiation was lower in the Malagasy (FST = 0.05) than in the South African species (FST = 0.16). However, at a smaller spatial scale (below 3 km), the Malagasy species was genetically more strongly differentiated than the South African species, which was reflected by the high inter-population variance within the sample site (C. guillauminii: 72.2 - 85.5 %; C. harveyi: 8.4 - 14.5 %). This strong differentiation could arise from limited gene flow, which was confirmed by spatial autocorrelation analyses. The shape of the autocorrelogram suggested that gene exchange between individuals occurred only up to 3 km in the Malagasy species, whereas up to 30 km in the South African species. These results on the genetic structure correspond to the expectations based on seed dispersal data. Thus, seed dispersal seems to be a key factor for the genetic structure in plant populations on a local scale.