925 resultados para damping dynamic mechanical analysis DMA CFRP electrospinning tan(delta)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical properties of three vegetable oil derived medium and long chain poly(-hydroxy fatty ester)s (P(Me--OHFA)s), namely poly(-hydroxynonanoate) [P(Me--OHC9)], poly(-hydroxytridecanoate) [P(Me--OHC13)] and poly(-hydroxyoctadecanoate) [P(Me--OHC18)] (n = 8, 12 and 17, respectively), of the [-(CH2)(n)-COO-](x) polyester homologous series are presented. The effect of M-n (M-n 10-40 kg mol(-1)) and n on the crystal structure and thermal and mechanical properties of the P(Me--OHFA)s were investigated by wide-angle X-ray diffraction (WAXD), TGA, DSC, dynamic mechanical analysis (DMA) and tensile analysis and are discussed in the context of the [-(CH2)(n)-COO-](x) polyester homologous series, contrasted with linear polyethylene (PE). For all P(Me--OHFA)s the WAXD data indicated an orthorhombic crystal phase reminiscent of linear PE with crystallinity (X-c = 50%-80%) depending strongly on M-n. The glass transition temperature and Young's modulus for P(Me--OHFA)s increased with X-c. The DSC, DMA and TGA studies for P(Me--OHFA)s (n = 8, 12 and 17) indicated strong correlations between the melting, glass transition and thermal degradation behavior and n. The established predictive structure relationships can be used for the custom engineering of polyester materials suitable for specialty and commodity applications. (c) 2014 Society of Chemical Industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study resin distribution and homogeneity of composite laminates manufactured by RTM, it was used CYCOM 890 monolithic toughened epoxy as a matrix with two different configurations of intermediated modulus (IM) carbon fibers: Satin Weave (5HS) and non crimp fabric (NCF). The injection parameters were defined based on Thermo Gravimetric Analysis (TG), Differential Scanning Calorimetry (DSC) and rheological analysis. After processing the material, the resin/fiber impregnation was studied using ultrasonic test, Thermo Gravimetric Analysis, Differential Scanning Calorimetry, Dynamic Mechanical Analysis (DMA) and flexural tests. Therefore, it was able to observe an internal residual stress during the cooling process in both laminates, higher in the composite using NCF fabric due to the lack of symmetry, although a good proportion of fiber/matrix has been verified by the lower values of flexural modulus deviation. The DMA enabled the visualization of glass transition and its association with the inter and intra molecular interaction and movement, in which the NCF composite presented better permeability due to the lowest temperature of glass transition, when compared to the Satin Weave composite

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermosetting blends of an aliphatic epoxy resin and a hydroxyl-functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4'-diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM-cured epoxy/HBP blends with HBP content up to 40 wt% were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy-rich phase and an HBP-rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt%, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt% HBP exhibits a combined morphology of connected globules and bicominuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100-300 nm were formed after the HBP-rich phase was extracted with solvent from the cured blend with 40 wt% HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An initial aim of this project was to evaluate the conventional techniques used in the analysis of newly prepared environmentally friendly water-borne automotive coatings and compare them with solvent-borne coatings having comparable formulations. The investigation was carried out on microtuned layers as well as on complete automotive multi-layer paint systems. Methods used included the very traditional methods of gloss and hardness and the commonly used photo-oxidation index (from FTIR spectral analysis). All methods enabled the durability to weathering of the automotive coatings to be initially investigated. However, a primary aim of this work was to develop methods for analysing the early stages of chemical and property changes in both the solvent-borne and water-borne coating systems that take place during outdoor natural weathering exposures and under accelerated artificial exposures. This was achieved by using dynamic mechanical analysis (DMA), in both tension mode on the microtomed films (on all depths of the coating systems from the uppermost clear-coat right down to the electron-coat) and bending mode of the full (unmicrotomed) systems, as well as MALDI-Tof analysis on the movement of the stabilisers in the full systems. Changes in glass transition temperature and relative cross-link density were determined after weathering and these were related to changes in the chemistries of the binder systems of the coatings after weathering. Concentration profiles of the UV-stabilisers (UVA and HALS) in the coating systems were analysed as a consequence of migration in the coating systems in separate microtomed layers of the paint samples (depth profiling) after weathering and diffusion co-efficient and solubility parameters were determined for the UV stabilisers in the coating systems. The methods developed were used to determine the various physical and chemical changes that take place during weathering of the different (water-borne and solvent-borne) systems (photoxidation). The solvent-borne formulations showed less changes after weathering (both natural and accelerated) than the corresponding water-borne formulations due to the lower level of cross-links in the binders of the water-borne systems. The silver systems examined were more durable than the blue systems due to the reflecting power of the aluminium and the lower temperature of the silver coatings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : Natural materials have received a full attention in many applications because they are degradable and derived directly from earth. In addition to these benefits, natural materials can be obtained from renewable resources such as plants (i.e. cellulosic fibers like flax, hemp, jute, and etc). Being cheap and light in weight, the cellulosic natural fiber is a good candidate for reinforcing bio-based polymer composites. However, the hydrophilic nature -resulted from the presence of hydroxyl groups in the structure of these fibers- restricts the application of these fibers in the polymeric matrices. This is because of weak interfacial adhesion, and difficulties in mixing due to poor wettability of the fibers within the matrices. Many attempts have been done to modify surface properties of natural fibers including physical, chemical, and physico-chemical treatments but on the one hand, these treatments are unable to cure the intrinsic defects of the surface of the fibers and on the other hand they cannot improve moisture, and alkali resistance of the fibers. However, the creation of a thin film on the fibers would achieve the mentioned objectives. This study aims firstly to functionalize the flax fibers by using selective oxidation of hydroxyl groups existed in cellulose structure to pave the way for better adhesion of subsequent amphiphilic TiO[subscript 2] thin films created by Sol-Gel technique. This method is capable of creating a very thin layer of metallic oxide on a substrate. In the next step, the effect of oxidation on the interfacial adhesion between the TiO[subscript 2] film and the fiber and thus on the physical and mechanical properties of the fiber was characterized. Eventually, the TiO[subscript 2] grafted fibers with and without oxidation were used to reinforce poly lactic acid (PLA). Tensile, impact, and short beam shear tests were performed to characterize the mechanical properties while Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic mechanical analysis (DMA), and moisture absorption were used to show the physical properties of the composites. Results showed a significant increase in physical and mechanical properties of flax fibers when the fibers were oxidized prior to TiO[subscript 2] grafting. Moreover, the TiO[subscript 2] grafted oxidized fiber caused significant changes when they were used as reinforcements in PLA. A higher interfacial strength and less amount of water absorption were obtained in comparison with the reference samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A frequency-domain method for nonlinear analysis of structural systems with viscous, hysteretic, nonproportional and frequency-dependent damping is presented. The nonlinear effects and nonproportional damping are considered through pseudo-force terms. The modal coordinates uncoupled equations are iteratively solved. The treatment of initial conditions in the frequency domain which is necessary for the treatment of the uncoupled equations is initially adressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A really particular and innovative metal-polymer sandwich material is Hybrix. Hybrix is a product developed and manufactured by Lamera AB, Gothenburg, Sweden. This innovative hybrid material is composed by two relatively thin metal layers if compared to the core thickness. The most used metals are aluminum and stainless steel and are separated by a core of nylon fibres oriented perpendicularly to the metal plates. The core is then completed by adhesive layers applied at the PA66-metal interface that once cured maintain the nylon fibres in position. This special material is very light and formable. Moreover Hybrix, depending on the specific metal which is used, can achieve a good corrosion resistance and it can be cut and punched easily. Hybrix architecture itself provides extremely good bending stiffness, damping properties, insulation capability, etc., which again, of course, change in magnitude depending in the metal alloy which is used, its thickness and core thickness. For these reasons nowadays it shows potential for all the applications which have the above mentioned characteristic as a requirement. Finally Hybrix can be processed with tools used in regular metal sheet industry and can be handled as solid metal sheets. In this master thesis project, pre-formed parts of Hybrix were studied and characterized. Previous work on Hybrix was focused on analyze its market potential and different adhesive to be used in the core. All the tests were carried out on flat unformed specimens. However, in order to have a complete description of this material also the effect of the forming process must be taken into account. Thus the main activities of the present master thesis are the following: Dynamic Mechanical-Thermal Analysis (DMTA) on unformed Hybrix samples of different thickness and on pre-strained Hybrix samples, pure epoxy adhesive samples analysis and finally moisture effects evaluation on Hybrix composite structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic mechanical properties of a polyurethane (PU) elastomer and a mortar processed with the same elastomer (modified polytetramethylene ether glycol (PTMEG)) were studied. The results obtained showed that the liquid aromatic amine ETHACURE (R) 300, used as cure agent, can be used to substitute the aromatic amine MOCA (R), which is usually used as cure agent in high performance elastomers. The resulting mortar produced with ETHACURE (R) 300 presents similar dynamic-mechanical thermal properties when compared with MOCA (R). However, dynamic-mechanical thermal analysis studies showed that the mortar developed with ETHACURE (R) 300 presents some advantages such as the low values of tan d, indicating a good capacity of recovery of the strain after retreating an applied force. (c) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012