942 resultados para cultivated tomato
Resumo:
Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 1998. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1998. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of Tomatoes. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.
Resumo:
Resistance to tomato yellow leafcurl virus in tomato.
Resumo:
The influence of insect attack on bud fall and subsequent poor flowering in cultivated hibiscus (Hibiscus rosa-sinensis) was studied in cages and in the field in southern Queensland. Three species of Hemiptera (most importantly Aulacosternum nigrorubrum but also Nezara viridula and Tectocoris diophthalmus) caused some bud fall in 2 plantations studied. Adults of Macroura concolor suppressed flowering for long periods in spring and summer. Data from white funnel traps and counts in flowers showed that M. concolor was most active in these seasons. Methiocarb (0.75 g a.i./litre) reduced beetle numbers and increased flowering. When 15 or more adults of M. concolor occurred per bud (or flower) most buds fell and few flowers were produced, but when beetles declined to 10 or fewer many buds survived and widespread flowering occurred. Larvae fed in fallen buds and flowers and the mean duration of development of the combined immature stages was 14 days at 26 deg C. The preference of adults of M. concolor for pale coloured flowers was examined. Hibiscus plants produced most buds from December to June with lower numbers in winter and spring (July to November). Bud production in spring and early summer (September-December) varied greatly and probably contributed to poor flowering, however, even when large numbers of buds occurred very few flowers were produced because of the activities of M. concolor.
Resumo:
The research undertaken here was in response to a decision by a major food producer in about 2009 to consider establishing processing tomato production in northern Australia. This was in response to a lack of water availability in the Goulburn Valley region following the extensive drought that continued until 2011. The high price of water and the uncertainty that went with it was important in making the decision to look at sites within Queensland. This presented an opportunity to develop a tomato production model for the varieties used in the processing industry and to use this as a case study along with rice and cotton production. Following some unsuccessful early trials and difficulties associated with the Global Financial Crisis, large scale studies by the food producer were abandoned. This report uses the data that was collected prior to this decision and contrasts the use of crop modelling with simpler climatic analyses that can be undertaken to investigate the impact of climate change on production systems. Crop modelling can make a significant contribution to our understanding of the impacts of climate variability and climate change because it harnesses the detailed understanding of physiology of the crop in a way that statistical or other analytical approaches cannot do. There is a high overhead, but given that trials are being conducted for a wide range of crops for a variety of purposes, breeding, fertiliser trials etc., it would appear to be profitable to link researchers with modelling expertise with those undertaking field trials. There are few more cost-effective approaches than modelling that can provide a pathway to understanding future climates and their impact on food production.
Resumo:
The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com
Resumo:
The properties of the S-strain of cucumber mosaic virus (S-CMV) and the B-strain of tomato aspermy virus (B-TAV) have been studied with respect to their (i) size and sedimentation behavior, (ii) requirement of divalent metal ions for stability, (iii) sensitivity towards chloride salts and the anionic detergent sodium dodecyl sulfate, (iv) solubility in ammonium sulfate-containing buffers, and (v) pH-dependent structural transitions. The results indicate that the coat protein of B-TAV is more hydrophobic than the other well-studied strains of TAV and CMV. Circular dichroism and uv absorption studies reveal pH-dependent structural transitions, although these do not result in particle swelling. These transitions appear to alter the strength of protein-nucleic acid interactions in these viruses.
Resumo:
In 2011, an outbreak of the quarantine-regulated pathogen Potato spindle tuber viroid (PSTVd) occurred in a commercial glasshouse-grown tomato crop in Queensland, Australia. Phylogenetic studies showed that the genotype of this isolate grouped in a cluster of PSTVd genotypes from tomato and Physalis peruviana, and exhibited an interesting mutation (U257→A) that has previously been linked to lethal symptom expression in tomato. Transmission studies showed that the viroid could be mechanically transmitted from crushed fruit sap, but not from undamaged fruits. A low rate of asymptomatic infection was determined for plants in the affected glasshouse, demonstrating the efficacy of using symptoms to detect PSTVd infections in tomato. No PSTVd infections were detected in solanaceous weeds located outside of the infected glasshouse, excluding them from playing a role in the viroid epidemiology. Monitoring and subsequent testing of new tomato crops grown in the facility demonstrated successful eradication of the pathogen. A trace-back analysis linked the outbreak of PSTVd to an infected imported tomato seed-lot, indicating that PSTVd is transmitted internationally through contaminated seed
Resumo:
The occurrence of pathogenic and endophytic species of Phyllosticta on cultivated Citrus in Australia was investigated by DNA sequence analysis of specimens held in plant pathology herbaria and culture collections. Sequences of the internal transcribed spacer region (ITS1, 5.8S, ITS2), and partial translation elongation factor 1-alpha (TEF) gene of 41 Phyllosticta-like isolates from Citrus were compared to those sequences from the type specimens of Phyllosticta recorded from around the world. Phylogenetic analysis resolved all the sequences of Australian accessions into two major clades. One clade corresponded to P. citricarpa, which causes citrus black spot disease. The other clade contained P. capitalensis, which is a known endophyte of Citrus and many other plant species. All included herbarium accessions previously designated as Guignardia mangiferae are now designated P. capitalensis. No Australian isolates were identified as the newly described pathogens of citrus P. citriasiana or P. citrichinaensis, or the endophytes Guignarida mangiferae, P. brazilianiae, or P. citribraziliensis. © 2013 Australasian Plant Pathology Society Inc.
Resumo:
Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naive natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Cade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene similar to 21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real-time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus-Israel (TYLCV-IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B.tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality-assurance purposes, two internal control assays were included in the assay panel for the co-amplification of solanaceous plant DNA or B.tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV-IL, 100 plasmid copies of ToLCV, 500fg B.tabaci MEAM1 and 300fg B.tabaci MED DNA. Evaluated methods for routine testing of field-collected whiteflies are presented, including protocols for processing B.tabaci captured on yellow sticky traps and for bulking of multiple B.tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality-assured diagnostic method for the identification and discrimination of tomato-infecting begomovirus and B.tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease-management programmes both in Australia and worldwide.
Resumo:
Host specificity tests on Gynaikothrips ficorum (Marchal) and Gynaikothrips uzeli (Zimmerman) (Thysanoptera: Phlaeothripidae) have shown that under experimental conditions, G. ficorum will induce leaf galls on both Ficus benjamina L. and Ficus microcarpa L. f. (Rosales: Moraceae), but G. uzeli will induce galls only on F. benjamina. A further interesting aspect of the results is that gall induction by G. uzeli on F. benjamina appears to have been suppressed in the presence of F. microcarpa plants in the same cage. Liothrips takahashii (Moulton) (Thysanoptera: Phlaeothripidae), an inquiline in the galls of these Gynaikothrips, is reported for the first time from Australia, mainland China, Malaysia, Costa Rica, and western USA.
Resumo:
Silverleaf whitefly (SLW), Bemisia tabaci biotype B, is a major horticultural pest that costs Queensland vegetable growers millions of dollars in lost production and control measures each year. In the Bowen and Burdekin districts of North Queensland, the major cultivated SLW host crops are tomatoes, melons, green beans, pumpkins, eggplants, and cucumbers, which cover a total production area of approximately 6500 ha. Eretmocerus hayati, an effective SLW parasitoid, was imported into Australia by CSIRO in 2002 and released from quarantine in 2004. In 2006, DAFF established a mass-rearing unit for E. hayati at Bowen Research Station to provide E. hayati for release on vegetable farms within its SLW integrated pest management research program. A total of 1.3 million E. hayati were released over three seasons on 34 vegetable farms in the Bowen and Burdekin districts (October 2006 to December 2008). Post-release samplings were conducted across the release area over this time period with parasitism levels recorded in tomatoes, melons, beans, eggplants, pumpkins, and various SLW weed hosts. Sample data show that E. hayati established at most release sites as well as some non-release sites, indicating natural spread. Overall results from these three years of evaluation clearly demonstrated that E hayati releases played a significant role in SLW control. In most crops sampled, E hayati exerted between 30 and 80% parasitism. Even in regularly sprayed crops, such as tomato and eggplant, E. hayati was able to achieve an overall average parasitism of 45%.
Resumo:
Queensland fruit flies Bactrocera tryoni and B. neohumeralis are considered major quarantine pests of tomato, a major crop in the horticultural production district around Bowen, North Queensland, Australia. Preharvest and/or postharvest treatments are required to meet the market access requirements of both domestic and international trading partners. The suspension from use of dimethoate and fenthion, the two insecticides used for fruit fly control, has resulted in the loss of both pre and postharvest uses in fresh tomato. Research undertaken quantitatively at Bowen evaluated the effectiveness of pre-harvest production systems without specific fruit fly controls and postharvest mitigation measures in reducing the risk of fruit fly infestation in tomato. A district-wide trapping using cue-lure baited traps was undertaken to determine fruit fly seasonal patterns in relation to the cropping seasons. A total of 17,626 field-harvested and 11,755 pack-house tomatoes were sampled from ten farms over three cropping seasons (2006-2009). The fruit were incubated and examined for fruit fly infestation. No fruit fly infested fruit were recorded over the three seasons in either the field or the pack-house samples. Statistical analyses showed that upper infestation levels were extremely low (between 0.025 and 0.062%) at the 95% confidence level. The trap catches showed a seasonal pattern in fruit fly activity, with low numbers during the autumn and winter months, rising slightly in spring and peaking in summer. This seasonal pattern was similar over the four seasons. The main two species of fruit fly caught were B. tryoni and B. neohumeralis. Based on the results, it is clear that the risk of fruit fly infestation is extremely low under the current production systems in the Bowen region.
Resumo:
The biodiversity of farmland ecosystems has decreased remarkably during the latter half of the 20th century, and this development is due to intensive farming with its various environmental effects. In the countries of the EU the Common Agricultural Policy (CAP) is the main determinant affecting farmland biodiversity, since the agricultural policy defines guidelines of agricultural practices. In addition to policies promoting intensive farming, CAP also includes national agri-environment schemes (AES), in which a part of subsidies paid to farmers is directed to acts that are presumed to promote environmental protection and biodiversity. In order to shape AES into relevant and powerful tools for biodiversity protection, detailed studies on the effects of agriculture on species and species assemblages are needed. In my thesis I investigated the importance of habitat heterogeneity and effects of different habitat and landscape characteristics on farmland bird abundance and diversity in typical cereal cultivation-dominated southern Finnish agricultural environments. The extensive data used were collected by territory mapping. My two main study species were the drastically declined ortolan bunting (Emberiza hortulana) and the phenomenally increased tree sparrow (Passer montanus); in addition I studied assemblages of 20 species breeding in open arable and edge/bush habitats. In light of my results I discuss whether the Finnish AES take into account the habitat needs of farmland birds, and I provide suggestions for improvement of the future AES. My results show that heterogeneity of both uncultivated and cultivated habitats increases abundance and species richness among farmland birds, but in this respect the amount and diversity of uncultivated habitats are essential. Ditches in particular are a keystone structure for farmland birds in boreal landscapes. Ditches lined by trees or bushes increased ortolan bunting abundance. Loss of that kind of ditches (and clearance of forest and bush patches), reduced breeding ortolan buntings, mainly by decreasing availability of song-posts that are important for the breeding groups of the species. Heterogeneity of uncultivated habitats, most importantly open ditches and the habitat patch richness, increased densities and species richnesses of species assemblages of open arable and edge/bush habitats. Human impact (winter-feeding, nest-boxes) affected favourably the tree sparrow s rapid range expansion in southern Finland, but any habitat types had no significant effects. At the moment the Finnish agri-environmental policy does not conserve farmland ditches as a habitat type. Instead, sub-surface drainage is financially promoted. This is a fatal mistake as far as farmland biodiversity is concerned. In addition to the maintenance of ditches, at least the following aspects should be included more than is done previously in the measures of the future AES: 1) promotion of diverse crop rotation (especially by promoting animal husbandry), 2) maintenance of tree and bush vegetation in islets and along ditches, 3) promotion of organic farming.