898 resultados para crash avoidance, path planning, spatial modeling, object tracking
Resumo:
In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the basal functionality of peripheral vision in those sports-games situations, a Multiple Object Tracking (MOT) task that requires to track a certain number of targets amidst distractors, was chosen. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). While eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time as well as saccadic reaction time were calculated as dependent variables. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.
Resumo:
In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the capability of using peripheral vision in those sports-games situations, a Multiple-Object-Tracking task that requires to track a certain number of targets amidst distractors, was chosen to determine the sensitivity of detecting target changes with peripheral vision only. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). Eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time and saccadic reaction time (change onset to saccade onset) were calculated and eye-movements were recorded. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
In this paper, a system that allows applying precision agriculture techniques is described. The application is based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this work is practical experimentation with an integrated tool. Contributions in different fields are also reported. Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust flight control based on the use of a control law that improves the maneuverability of the quadrotors has been designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task negotiations to final performance. These experiments also allowed testing control robustness under different weather conditions.
Resumo:
In the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.
Resumo:
In the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.
Resumo:
En esta tesis se presenta un análisis en profundidad de cómo se deben utilizar dos tipos de métodos directos, Lucas-Kanade e Inverse Compositional, en imágenes RGB-D y se analiza la capacidad y precisión de los mismos en una serie de experimentos sintéticos. Estos simulan imágenes RGB, imágenes de profundidad (D) e imágenes RGB-D para comprobar cómo se comportan en cada una de las combinaciones. Además, se analizan estos métodos sin ninguna técnica adicional que modifique el algoritmo original ni que lo apoye en su tarea de optimización tal y como sucede en la mayoría de los artículos encontrados en la literatura. Esto se hace con el fin de poder entender cuándo y por qué los métodos convergen o divergen para que así en el futuro cualquier interesado pueda aplicar los conocimientos adquiridos en esta tesis de forma práctica. Esta tesis debería ayudar al futuro interesado a decidir qué algoritmo conviene más en una determinada situación y debería también ayudarle a entender qué problemas le pueden dar estos algoritmos para poder poner el remedio más apropiado. Las técnicas adicionales que sirven de remedio para estos problemas quedan fuera de los contenidos que abarca esta tesis, sin embargo, sí se hace una revisión sobre ellas.---ABSTRACT---This thesis presents an in-depth analysis about how direct methods such as Lucas- Kanade and Inverse Compositional can be applied in RGB-D images. The capability and accuracy of these methods is also analyzed employing a series of synthetic experiments. These simulate the efects produced by RGB images, depth images and RGB-D images so that diferent combinations can be evaluated. Moreover, these methods are analyzed without using any additional technique that modifies the original algorithm or that aids the algorithm in its search for a global optima unlike most of the articles found in the literature. Our goal is to understand when and why do these methods converge or diverge so that in the future, the knowledge extracted from the results presented here can efectively help a potential implementer. After reading this thesis, the implementer should be able to decide which algorithm fits best for a particular task and should also know which are the problems that have to be addressed in each algorithm so that an appropriate correction is implemented using additional techniques. These additional techniques are outside the scope of this thesis, however, they are reviewed from the literature.
Resumo:
Subpixel methods increase the accuracy and efficiency of image detectors, processing units, and algorithms and provide very cost-effective systems for object tracking. Published methods achieve resolution increases up to three orders of magnitude. In this Letter, we demonstrate that this limit can be theoretically improved by several orders of magnitude, permitting micropixel and submicropixel accuracies. The necessary condition for movement detection is that one single pixel changes its status. We show that an appropriate target design increases the probability of a pixel change for arbitrarily small shifts, thus increasing the detection accuracy of a tracking system. The proposal does not impose severe restriction on the target nor on the sensor, thus allowing easy experimental implementation.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Crash Avoidance Research, Washington, D.C.
Resumo:
A recently proposed colour based tracking algorithm has been established to track objects in real circumstances [Zivkovic, Z., Krose, B. 2004. An EM-like algorithm for color-histogram-based object tracking. In: Proc, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 798-803]. To improve the performance of this technique in complex scenes, in this paper we propose a new algorithm for optimally adapting the ellipse outlining the objects of interest. This paper presents a Lagrangian based method to integrate a regularising component into the covariance matrix to be computed. Technically, we intend to reduce the residuals between the estimated probability distribution and the expected one. We argue that, by doing this, the shape of the ellipse can be properly adapted in the tracking stage. Experimental results show that the proposed method has favourable performance in shape adaption and object localisation.
Resumo:
We present a novel analysis of the state of the art in object tracking with respect to diversity found in its main component, an ensemble classifier that is updated in an online manner. We employ established measures for diversity and performance from the rich literature on ensemble classification and online learning, and present a detailed evaluation of diversity and performance on benchmark sequences in order to gain an insight into how the tracking performance can be improved. © Springer-Verlag 2013.
Resumo:
The major objectives of this dissertation were to develop optimal spatial techniques to model the spatial-temporal changes of the lake sediments and their nutrients from 1988 to 2006, and evaluate the impacts of the hurricanes occurred during 1998–2006. Mud zone reduced about 10.5% from 1988 to 1998, and increased about 6.2% from 1998 to 2006. Mud areas, volumes and weight were calculated using validated Kriging models. From 1988 to 1998, mud thicknesses increased up to 26 cm in the central lake area. The mud area and volume decreased about 13.78% and 10.26%, respectively. From 1998 to 2006, mud depths declined by up to 41 cm in the central lake area, mud volume reduced about 27%. Mud weight increased up to 29.32% from 1988 to 1998, but reduced over 20% from 1998 to 2006. The reduction of mud sediments is likely due to re-suspension and redistribution by waves and currents produced by large storm events, particularly Hurricanes Frances and Jeanne in 2004 and Wilma in 2005. Regression, kriging, geographically weighted regression (GWR) and regression-kriging models have been calibrated and validated for the spatial analysis of the sediments TP and TN of the lake. GWR models provide the most accurate predictions for TP and TN based on model performance and error analysis. TP values declined from an average of 651 to 593 mg/kg from 1998 to 2006, especially in the lake’s western and southern regions. From 1988 to 1998, TP declined in the northern and southern areas, and increased in the central-western part of the lake. The TP weights increased about 37.99%–43.68% from 1988 to 1998 and decreased about 29.72%–34.42% from 1998 to 2006. From 1988 to 1998, TN decreased in most areas, especially in the northern and southern lake regions; western littoral zone had the biggest increase, up to 40,000 mg/kg. From 1998 to 2006, TN declined from an average of 9,363 to 8,926 mg/kg, especially in the central and southern regions. The biggest increases occurred in the northern lake and southern edge areas. TN weights increased about 15%–16.2% from 1988 to 1998, and decreased about 7%–11% from 1998 to 2006.
Resumo:
To navigate effectively in three-dimensional space, flying insects must approximate distances to nearby objects. Humans are able to use an array of cues to guide depth perception in the visual world. However, some of these cues are not available to insects that are constrained by their rigid eyes and relatively small body size. Flying fruit flies can use motion parallax to gauge the distance of nearby objects, but using this cue becomes a less effective strategy as objects become more remote. Humans are able to infer depth across far distances by comparing the angular distance of an object to the horizon. This study tested if flying fruit flies, like humans, use the relative position of the horizon as a depth cue. Fruit flies in tethered flight were stimulated with a virtual environment that displayed vertical bars of varying elevation relative to a horizon, and their tracking responses were recorded. This study showed that tracking responses of the flies were strongly increased by reducing the apparent elevation of the bar against the horizon, indicating that fruit flies may be able to assess the distance of far off objects in the natural world by comparing them against a visual horizon.
Resumo:
Otto-von Guericke-Universität Magdeburg, Fakultät für Maschinenbau, Dissertation, 2016