935 resultados para covering of the ground
Resumo:
Precise quasielastic and alpha-transfer excitation functions, at theta(lab) = 161 degrees, have been measured at energies near the Coulomb barrier for the (16)O + (63)Cu system. This is the first time reported quasielastic barrier distribution for a medium odd-A nucleus target deduced from the data. Additional elastic scattering angular distributions data available in the literature for this system were also used in the investigation of the role of several individual channels in the reaction dynamics, by comparing the data with free-parameter coupled-channels calculations. In order to do so, the nucleus-nucleus bare potential has a double-folding potential as the real component and only a very short-range imaginary potential. The quasielastic barrier distribution has been shown to be a powerful tool in this analysis at the barrier region. A high collectivity of the (63)Cu was observed, mainly due to the strong influence of its 5/2-and 7/2-states on all reaction channels investigated. A striking influence of the reorientation of the ground-state target-spin on the elastic cross sections, taken at backward angles, was also observed.
Resumo:
Cestodes (tapeworms) are a derived, parasitic clade of the phylum Platyhelminthes (flatworms). The cestode body wall represents an adaptation to its endoparasitic lifestyle. The epidermis forms a nonciliated syncytium, and both muscular and nervous system are reduced. Morphological differences between cestodes and free-living flatworms become apparent already during early embryogenesis. Cestodes have a complex life cycle that begins with an infectious larva, called the oncosphere. In regard to cell number, cestode oncospheres are among the simplest multicellular organisms, containing in the order of 50-100 cells. As part of our continuing effort to analyze embryonic development in flatworms, we describe here the staining pattern obtained with acTub in embryos and larvae of the cestode Hymenolepis diminuta and, briefly, the monogenean Neoheterocotyle rhinobatidis. In addition, we labeled the embryonic musculature of Hymenolepis with phalloidin. In Hymenolepis embryos, two different cell types that we interpret as neurons and epidermal gland cells express acTub. There exist only two neurons that develop close to the midline at the anterior pole of the embryo. The axons of these two neurons project posteriorly into the center of the oncosphere, where they innervate the complex of muscles that is attached to the booklets. In addition to neurons, acTub labels a small and invariant set of epidermal gland cells that develop at superficial positions, anteriorly adjacent to the neurons, in the dorsal midline, and around the posteriorly located hooklets. During late stages of embryogenesis they spread and form a complete covering of the embryo. We discuss these data in the broader context of platyhelminth embryology.
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
The chemical features of the ground water in the Lower Tagus Cenozoic deposits are strongly influenced by lithology, by the velocity and direction of the water movement as well as by the localization of the recharge and discharge zones. The mineralization varies between 80 and 900 mg/l. It is minimal in the recharge zones and in the Pliocene sand and maximum in the Miocene carbonated and along the alluvial valley. Mineralization always reflects the time of permanence, the temperature and the pressure. The natural process of water mineralization is disturbed in agricultural areas because the saline concentration of the infiltration water exceeds that of the infiltrated rainwater. In the discharge zones, the rise of the more mineralized, some times thermal deep waters related to tectonic accidents give rise to anomalies in the distribution of the aquiferous system mineralization model. The diversity of the hydrochemical facies of the ground water may be related to several factors whose identification is some times difficult.
Resumo:
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model
Calculation of the hyperfine structure transition energy and lifetime in the one-electron Bi^82+ ion
Resumo:
We calculate the energy and lifetime of the ground state hyperfine structure transition in one-electron Bi^82+ . The influence of various distributions of the magnetic moment and the electric charge in the nucleus ^209_83 Bi on energy and lifetime is studied.
Resumo:
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model
Resumo:
The antipsychotic drugs had been assumed to act as antagonists at D-2 dopamine receptors but recently these drugs have been shown to possess inverse agonist properties at this receptor. Inverse agonism may be demonstrated from the ability of these drugs to potentiate forskolin-stimulated cAMP accumulation or to suppress agonist-independent [S-35]GTPgammaS binding. The antipsychotic drugs tested generally appear as full inverse agonists in these assays regardless of chemical or therapeutic class. The mechanism of inverse agonism of the antipsychotic drugs is still unclear but may involve stabilisation of the ground state of the D-2 receptor. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
Multiconfigurational SCF and second-order perturbation theory have been employed to study seven low-lying singlet and triplet electronic states of the Mo-2 molecule. The bond order of the ground state has been analyzed based on the effective bond order (EBO), indicating that a fully developed sextuple bond is formed between the two Mo atoms. The experimentally observed excited states a(3)Sigma(+)(u) and A(1)Sigma(+)(u) have been determined and the so-called (3)Lambda excited state identified as the b(3)Sigma(+)(u) state, in agreement with experimental expectations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The complex dynamic Young's modulus of ceramic Nd2-xCexCuO4 with x = 0, 0.05 and 0.20 has been measured from 1.5 to 100 K at frequencies of 1 - 10 kHz. In the undoped sample the modulus starts decreasing below similar to 20 K, instead of approaching a constant value as in a normal solid. The modulus minimum has been interpreted in terms of paraelastic contribution from the relaxation of the Nd3+ 4f electrons between the levels of the ground state doublet, which is split by the interaction with the antiferromagnetically ordered Cu sublattice. The value of the splitting is found to be 0.34 meV, in excellent agreement with inelastic neutron scattering, infrared and specific heat experiments. With doping, the anomaly shifts to lower temperature and decreases in amplitude, consistently with a reduction of the local field from the Cu sublattice. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The deactivation of the two lowest excited states of Ho3+ was investigated in Ho3+ singly doped and Ho3+, Pr3+-codoped fluoride (ZBLAN) glasses. We establish that 0.1-0.3 mol % Pr3+ can efficiently deactivate the first excited (I-5(7)) state of Ho3+ while causing a small reduction of similar to 40% of the initial population of the second excited (I-5(6)) state. The net effect introduced by the Pr3+ ion deactivation of the Ho3+ ion is the fast recovery of the ground state of Ho3+. The Burshstein model parameters relevant to the Ho3+-> Pr3+ energy transfer processes were determined using a least squares fit to the measured luminescence decay. The energy transfer upconversion and cross relaxation parameters for 1948, 1151, and 532 nm excitations of singly Ho3+-doped ZBLAN were determined. Using the energy transfer rate parameters we determine from the measured luminescence, a rate equation model for 650 nm excitation of Ho3+-doped and Ho3+, Pr3+-doped ZBLAN glasses was developed. The rate equations were solved numerically and the population inversion between the I-5(6) and the I-5(7) excited states of Ho3+ was calculated to examine the beneficial effects on the gain associated with Pr3+ codoping. (c) 2007 American Institute of Physics.
Resumo:
The soil of the Paraiba, in generality, are acid and with low levels of available match, seriously limiting the income of the plants. A research in vegetation house was lead, with the objective to evaluate doses of calcareous soil and match in the culture of ricinus. The treatments had been composites for five levels of match: 0.0; 80; 160; 240 and 360 kg ha(-1) of P(2)O(5) and four dosis of calcareous rock: 0.0; 2.5; 3.5 and 4.5 t ha(-1) in experimental delineation of blocks casualized with 4 factorial project x 3 (four levels of match and three doses of calcareous soil) more two treatments you add zero of match (0.0 P(2)O(5): 2,5 t ha(-1) of calcareous soil) and calcareous soil zero (240 P(2)O(5): 0.0 t ha(-1) of calcareous soil), with three repetitions. The calcareous soil reduced the acidity of the ground and effect of the application of the match (>= 80 kg ha(-1) of P(2)O(5)) in the presence of the collagen (>= 2.5 t ha(-1) of CaCO(3)) with of the calcareous soil (>= 2.5 t ha(-1) of CaCO(3)) in the presence of the match was not verified well (>= 80 kg ha(-1) of P(2)O(5)). The match applied in the absence of the calcareous soil was limited to the income of the culture of what the calcareous soil in the absence of the match.
Resumo:
The electronic structure and spectroscopic properties (R(e), omega(e), omega(e)x(e), beta(e), and T(e)) of the ground state and the 22 lowest excited states of chlorine molecule were studied within a four-component relativistic framework using the MOLFDIR program package. The potential energy curves of all possible 23 covalent states were calculated using relativistic complete open shell configuration interaction approach. In addition, four component multireference configuration interaction with single and double excitation calculations were performed in order to infer the effects due to dynamical correlation in vertical excitations. The calculated properties are in good agreement with the available experimental data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This doctoral thesis focuses on ground-based measurements of stratospheric nitric acid (HNO3)concentrations obtained by means of the Ground-Based Millimeter-wave Spectrometer (GBMS). Pressure broadened HNO3 emission spectra are analyzed using a new inversion algorithm developed as part of this thesis work and the retrieved vertical profiles are extensively compared to satellite-based data. This comparison effort I carried out has a key role in establishing a long-term (1991-2010), global data record of stratospheric HNO3, with an expected impact on studies concerning ozone decline and recovery. The first part of this work is focused on the development of an ad hoc version of the Optimal Estimation Method (Rodgers, 2000) in order to retrieve HNO3 spectra observed by means of GBMS. I also performed a comparison between HNO3 vertical profiles retrieved with the OEM and those obtained with the old iterative Matrix Inversion method. Results show no significant differences in retrieved profiles and error estimates, with the OEM providing however additional information needed to better characterize the retrievals. A final section of this first part of the work is dedicated to a brief review on the application of the OEM to other trace gases observed by GBMS, namely O3 and N2O. The second part of this study deals with the validation of HNO3 profiles obtained with the new inversion method. The first step has been the validation of GBMS measurements of tropospheric opacity, which is a necessary tool in the calibration of any GBMS spectra. This was achieved by means of comparisons among correlative measurements of water vapor column content (or Precipitable Water Vapor, PWV) since, in the spectral region observed by GBMS, the tropospheric opacity is almost entirely due to water vapor absorption. In particular, I compared GBMS PWV measurements collected during the primary field campaign of the ECOWAR project (Bhawar et al., 2008) with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. I found that GBMS PWV measurements are in good agreement with the other three data sets exhibiting a mean difference between observations of ~9%. After this initial validation, GBMS HNO3 retrievals have been compared to two sets of satellite data produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). This part of my thesis is inserted in GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year project, aimed at developing a long-term data record of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record will be based mainly on satellite-derived measurements but ground-based observations will be pivotal for assessing offsets between satellite data sets. Since the GBMS has been operated for more than 15 years, its nitric acid data record offers a unique opportunity for cross-calibrating HNO3 measurements from the two MLS experiments. I compare GBMS HNO3 measurements obtained from the Italian Alpine station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), during the period February 2004 - March 2007, and from Thule Air Base, Greenland (76.5°N 68.8°W), during polar winter 2008/09, and Aura MLS observations. A similar intercomparison is made between UARS MLS HNO3 measurements with those carried out from the GBMS at South Pole, Antarctica (90°S), during the most part of 1993 and 1995. I assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels. Results show that, except for measurements carried out at Thule, ground based and satellite data sets are consistent within the errors, at all potential temperature levels.