987 resultados para contact pressure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extreme diversity of conditions acting on railways necessitates a variety of experimental approaches to study the critical wear mechanisms that present themselves at the contact interface. This work investigates the effects of contact pressure and geometry in rolling-contact wear tests by using discs with different radii of curvature to simulate the varying contact conditions that may be typically found in the field. It is commonly adapted to line contact interface as it has constant contact pressure. But practical scenario of the rail wheel interface, the contact area increase and contact pressure change as tracks worn off. The tests were conducted without any significant amount of traction, but micro slip was still observed due to contact deformation. Moreover, variation of contact pressure was observed due to contact patch elongation and diameter reduction. Rolling contact fatigue, adhesive and sliding wear were observed on the curved contact interface. The development of different wear regimes and material removal phenomena were analysed using microscopic images in order to broaden the understanding of the wear mechanisms occurring in the rail-wheel contact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates the effects of contact pressure and geometry in rolling-contact wear tests by using discs with different radii of curvature to simulate the varying contact conditions that may be typically found in the field. The tests were conducted without any significant amount of traction, but micro slip was still observed due to contact deformation. Moreover, variation of contact pressure was observed due to contact patch elongation and diameter reduction. Rolling contact fatigue, adhesive and sliding wear were observed on the curved contact interface. The development of different wear regimes and material removal phenomena were analyzed using microscopic images in order to broaden the understanding of the wear mechanisms occurring in the rail-wheel contact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The technique of friction stir welding (FSW) puts effective use frictional heat for the purpose of joining metallic materials. In this research article, we present and discuss an experimental method to determine the coefficient of friction during FSW. The experiments were conducted to study the interaction between the FSW tool (a die steel) and the base metal (a high strength aluminum alloy) at various contact pressures (13MPa, 26MPa, and 39MPa) and rotation speeds (200rpm, 600rpm, 1000rpm, and 1400rpm). The experimental results, the microstructure, and the process temperature reveal the experimental setup to be capable of simulating the conditions during FSW. The coefficient of friction was found to vary from 0.15 to 1.4, and the temperature increased to as high as 450C. The coefficient of friction was found to increase with temperature. There exists a critical temperature at which point a steep increase in the coefficient of friction was observed. The critical temperature decreases from 250C at a contact pressure of 26MPa to 200C at contact pressure of 34MPa. Below the critical temperature at a specific contact pressure the maximum coefficient of friction is 0.6, and above the critical temperature it reaches a value as high as 1.4. The steep increase in the coefficient of friction is found to be due to the seizure phenomenon and the contact condition during FSW between the tool and the workpiece (base metal) is found to be sticking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is known that the vibrational spectra of beetle-type scanning tunneling microscopes with a total mass of ≈3–4 g contain extrinsic ‘rattling’ modes in the frequency range extending from 500 to 1700 Hz that interfere with image acquisition. These modes lie below the lowest calculated eigenfrequency of the beetle and it has been suggested that they arise from the inertial sliding of the beetle between surface asperities on the raceway. In this paper we describe some cross-coupling measurements that were performed on three home-built beetle-type STMs of two different designs. We provide evidence that suggests that for beetles with total masses of 12–15 g all the modes in the rattling range are intrinsic. This provides additional support for the notion that the vibrational properties of beetle-type scanning tunneling microscopes can be improved by increasing the contact pressure between the feet of the beetle and the raceway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on a radial moment field and the square yield criterion, a lower-bound collapse load is developed for a square footing subjected to a generalized contact pressure distribution. The current lower-bound collapse load compares well with the available upper-bound solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gravity based structure (GBS) with external Steel–Concrete–Steel (SCS) sandwich ice-resistant wall has been developed for the Arctic oil and gas drilling. This paper firstly reported the experimental studies on the mechanical properties of steel and concretes under Arctic low temperature. With the test data, design equations were developed to incorporate the influences of the low temperature on these mechanical properties. Two types of Arctic GBS structure with flower-conical SCS sandwich shell type and plate type of ice-resistant wall have been developed for the Arctic offshore structure. Besides the studies on the materials, two SCS sandwich prototype shells and plates were, respectively, prepared and tested under patch loading that simulated the localized ice-contact pressure. The structural behaviors of the SCS sandwich structure under patch loading were reported and discussions were made on the influences of different parameters on the structural behavior of the structure. Analytical models were developed to predict the punching shear resistances of the SCS sandwich structure through modifying the code provisions. The accuracies of the developed analytical models were checked through validations against 27 tests in the literature. Corresponding design procedures on resistances of SCS sandwich structure were recommended based on these discussions and validations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, analog solutions are presented for the response of a circular footing resting on an elastic half-space with uniform and parabolic contact pressure distributions and subjected to frequency dependent and frequency independent excitations. In addition, an analog solution to a rigid circular footing subjected to frequency dependent excitation is also presented. The results have been compared with the rigorous solution of Sung and the agreement is found to be good.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ultimate flexural strength behavior of isolated square tapered and beam-slab reinforced footings are presented. Yield line solutions are developed for generalized contact pressure distributions and the influence of taper, beam size, fillet size, negative moment capacity, and contact pressure distribution on the collapse load is brought out. In beam-slab footings the optimum relative beam capacity required to make the beam rigid is indicated. Results of experimental investigations on footings resting on sand reveal that tapered (with isotropic as well as with alternative reinforcement patterns) and beam-slab footings exhibit superior structural behavior in terms of normalized first crack load, collapse load, relative rigidity, relative efficiency, and failure mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method is presented for obtaining lower bound on the carrying capacity of reinforced concrete foundation slab-structures subject to non-uniform contact pressure distributions. Functional approach suggested by Vallance for simply supported square slabs subject to uniform pressure distribution has been extended to simply supported rectangular slabs subject to symmetrical non-uniform pressure distributions. Radial solutions, ideally suited for rotationally symmetric problems, are shown to be adoptable for regular polygonal slabs subject to contact pressure paraboloids with constant edge pressures. The functional approach has been shown to be well suited even when the pressure is varying along the edges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminium-silicon alloy, an important material used for the construction of internal combustion engines, exhibit pressure induced distinct regimes of wear and friction; ultra-mild and mild. In this work the alloy is slid lubricated against a spherical steel pin at contact pressures characteristic of the two test regimes, at a very low sliding velocity. In both cases, the friction is controlled at the initial stages of sliding by the abrasion of the steel pin by the protruding silicon particles of the disc. The generation of nascent steel chips helps to breakdown the additive in the oil by a cationic exchange that yields chemical products of benefits to the tribology. The friction is initially controlled by abrasion, but the chemical products gain increasing importance in controlling friction with sliding time. After long times, depending on contact pressure, the chemical products determine sliding friction exclusively. In this paper, a host of mechanical and spectroscopic techniques are used to identify and characterize mechanical damage and chemical changes. Although the basic dissipation mechanisms are the same in the two regimes, the matrix remains practically unworn in the low-pressure ultra-mild wear regime. In the higher pressure regime at long sliding times a small but finite wear rate prevails. Incipient plasticity in the subsurface controls the mechanism of wear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanical joints in composites can be tailored to achieve improved performance and better life by appropriately selecting the laminate parameters. In order to gain the best advantage of this possibility of tailoring the laminate, it is necessary to understand the influence of laminate parameters on the behaviour of joints in composites. Most of the earlier studies in this direction were based on simplified assumptions regarding load transfer at the pin-plate interface and such studies were only carried out on orthotropic and quasi-isotropic laminates. In the present study, a more rigorous analysis is carried out to study pin joints in laminates with anisotropic properties. Two types of laminates with (0/ + ?4/90)s and (0/ ± ?2/90)s layups made out of graphite epoxy T300/5208 material system are considered. The analysis mainly concentrates on clearance fit in which the pin is of smaller diameter compared to the hole. The main aspect of the analysis of pin joints is the changing contact between the pin and the plate with increasing load levels. The analysis is carried out by an iterative finite element technique and a computationally efficient routine is developed for this purpose. Numerical studies indicate that the location and magnitude of the peak stresses along the hole boundary are functions of fibre angle and the overall anisotropic properties. It is also shown that the conventional assumption of cosine distribution for the contact pressure between pin and the plate in the analysis lead to underestimation of bearing failure load and overestimation of shear and tensile failure loads in typical (0/905)s cross-ply laminates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of a framed structure with a foundation beam resting on an elastic medium, representing the soil, has been studied using the photoelastic method. The contact pressure distribution, the fibre stress in the foundation beam and frame structure, as well as the stresses in the elastic medium, have been obtained. These have been compared with theoretical results obtained by idealizing the soil as (a) elastic half plane, and (b) elastic half space. It is shown that the photoelastic method can provide an easy solution to this type of problem if the soil can be idealized as an elastic continuum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plane stress solution for the interaction analysis of a framed structure, with a foundation beam, resting on a layered soil has been studied using both theoretical and photoelastic methods. The theoretical analysis has been done by using a combined analytical and finite element method. In this, the analytical solution has been used for the semi-infinite layered medium and finite element method for the framed structure. The experimental investigation has been carried out using two-dimensional photoelasticity in which modelling of the layered semi-infinite plane and a method to obtain contact pressure distribution have been discussed. The theoretical and experimental results in respect of contact pressure distribution between the foundation beam and layered soil medium, the fibre stresses in the foundation beam and framed structure have been compared. These results have also been compared with theoretical results obtained by idealizing the layered semi-infinite plane as (a) a Winkler model and (b) an equivalent homogeneous semi-infinite medium