879 resultados para consumption of fuel
Resumo:
Feral pigs (Sus scrofa) consume and damage crops and impact the environment through predation, competition and habitat disturbance, although supporting dietary data are lacking in agricultural landscapes. This study was undertaken to determine the relative importance of food items in the diet of feral pigs in a fragmented agricultural landscape, particularly to assist in predicting the breadth of likely impacts. Diet composition was assessed from the stomach contents of 196 feral pigs from agricultural properties in southern Queensland. Feral pigs were herbivorous, with plant matter comprising >99% of biomass consumed. Crops were consumed more frequently than non-crop species, and comprised >60% of dietary biomass, indicating a clear potential for direct economic losses. Consumption of pasture and forage species also suggests potential competition for pasture with domestic stock. There is little evidence of direct predation on native fauna, but feral pig feeding activities may impact environmental values. Seasonal differences in consumption of crop, pasture or animal food groups probably reflect the changing availability of food items. We recommend that future dietary studies examine food availability to determine any dietary preferences to assist in determining the foods most susceptible to damage. The outcomes of this study are important for developing techniques for monitoring the impacts of feral pigs, essential for developing management options to reduce feral pig damage on agricultural lands.
Resumo:
The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.
Resumo:
Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900degrees C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the TM-I. Metallic resistivity data below TM-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200 degrees C for 3 h exhibited insulator behavior.
Resumo:
Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of ca. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. The advantages and disadvantages of candidate fuel-cell systems and various fuels are considered together with the issue of whether the fuel should be converted directly in the fuel cell or should be reformed to hydrogen onboard the vehicle. For fuel cell vehicles to compete successfully with conventional internal-combustion engine vehicles, it appears that direct conversion fuel cells using probably hydrogen, but possibly methanol, are the only realistic contenders for road transportation applications. Among the available fuel cell technologies, polymer-electrolyte fuel cells directly fueled with hydrogen appear to be the best option for powering fuel cell vehicles as there is every prospect that these will exceed the performance of the internal-combustion engine vehicles but for their first cost. A target cost of $ 50/kW would be mandatory to make polymer-electrolyte fuel cells competitive with the internal combustion engines and can only be achieved with design changes that would substantially reduce the quantity of materials used. At present, prominent car manufacturers are deploying important research and development efforts to develop fuel cell vehicles and are projecting to start production by 2005.
Resumo:
The paper addresses the effect of particle size on tar generation in a fixed bed gasification system. Pyrolysis, a diffusion limited process, depends on the heating rate and the surface area of the particle influencing the release of the volatile fraction leaving behind residual char. The flaming time has been estimated for different biomass samples. It is found that the flaming time for wood flakes is almost one fourth than that of coconut shells for same equivalent diameter fuel samples. The particle density of the coconut shell is more than twice that of wood spheres, and almost four times compared with wood flakes; having a significant influence on the flaming time. The ratio of the particle surface area to that of an equivalent diameter is nearly two times higher for flakes compared with wood pieces. Accounting for the density effect, on normalizing with density of the particle, the flaming rate is double in the case of wood flakes or coconut shells compared with the wood sphere for an equivalent diameter. This is due to increased surface area per unit volume of the particle. Experiments are conducted on estimation of tar content in the raw gas for wood flakes and standard wood pieces. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to fast pyrolysis process resulting in higher tar fraction with low char yield. Increased residence time with staged air flow has a better control on residence time and lower tar in the raw gas. (C) 2014 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
The current work reports optical diagnostic measurements of fuel-air mixing and vortex structure in a single cavity trapped vortex combustor (TVC). Specifically, the mixture fraction using acetone PLIF technique in the non-reacting flow, and PIV measurements in the reacting flow are reported for the first time in trapped vortex combustors. The fuel-air momentum flux ratio, where the air momentum corresponds to that entering the cavity through a specially-incorporated flow guide vane, is used to characterize the mixing. The acetone PLIF experiments show that at high momentum flux ratios, the fuel-air mixing in the cavity is very minimal and is enhanced as the momentum flux ratio reduces, due to a favourable vortex formation in the cavity. Stoichiometric mixture fraction surfaces show that the mixing causes the reaction surfaces to shift from non-premixed to partially-premixed stratified mixtures. PIV measurements conducted in the non-reacting flow in the cavity further reinforce this observation. The scalar dissipation rates of mixture fraction were compared with the contours of RMS of fluctuating velocity and showed very good agreement. The regions of maximum mixing are observed to be along the fuel air interface. Reacting flow Ply measurements which differ substantially from the non-reacting cases primarily because of the heat release from combustion and the resulting gas expansion show that the vortex is displaced from the centre of the cavity towards the guide vane. Overall, the measurements show interesting features of the flow including the presence of the dual cavity structure and lead to a clear understanding of the underlying physics of the cavity flow highlighting the importance of the fuel-air momentum ratio parameter. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Magnesium aluminate spinel (MgAl2O4) forms an interesting system having tetrahedral and octahedral voids filled with near similar sized divalent Mg2+ and trivalent Al3+ cations. Structural disorder (e.g., Mg-Al antisite defects) can be tuned by synthetic conditions. This study reports the evolution of Mg/Al disorder in MgAl2O4 prepared by combustion synthesis using different types of fuels. The effect of nature of fuel and the final calcination temperature (600 degrees C-900 degrees C for 9h) on degree of cation ordering has been investigated combining powder X-ray (XRD) and neutron (NPD) diffraction. The results indicate very high degree of inversion in the samples crystallized at low annealing temperature, which on further annealing reduces toward the thermodynamically stable values. Raman spectroscopy, probing MgO4, and AlO4 tetrahedral bonds, confirmed the results at a local level.
Resumo:
Experimental data on evaporation of droplets of decane, Jet-A1, and Jet-A1 surrogate are generated using a spray in crossflow configuration. The advantage of a crossflow configuration is that it enables us to study droplet evaporation under forced convective conditions involving droplet diameters of size relevant in practical combustors. Specifically, spray from an airblast atomizer is injected into a preheated crossflow of air and the resulting spray is characterized in terms of spray structure along with droplet size and velocity. An existing correlation for the spray trajectory is modified to incorporate the effect of elevated temperature, and is found to be in good agreement with the experimental data. Droplet sizes and velocities are measured at different locations along the crossflow direction to assess droplet evaporation. Specifically, droplets having size less than 25-mu m are selected for further analysis since these droplets are observed to exhibit velocities which are aligned with the crossflow. By comparing the droplet diameter profiles at upstream and downstream locations, the evaporation constant k for the d(2)-law is obtained iteratively. To assess the efficacy of the values of k obtained, the calculated droplet size distribution using the proposed k values at the downstream location is compared with the measured droplet size distribution at that location. A reasonably good match is found for all the three liquids confirming the validity of the analysis. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. This led to predictions of improved materials, some of which were subsequently validated with experiments by our collaborators.
In part I, the challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface, and hence we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine all intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We found that the rate determination step (RDS) was the Oad hydration reaction (Oad + H2Oad -> OHad + OHad) in both cases, but that the barrier for pure Pt of 0.50 eV is reduced to 0.48 eV for Pt3Os, which at 80 degrees C would increase the rate by 218%. We collaborated with the Pu-Wei Wu’s group to carry out experiments, where we found that the dealloying process-treated Pt2Os catalyst showed two-fold higher activity at 25 degrees C than pure Pt and that the alloy had 272% improved stability, validating our theoretical predictions.
We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML/Os core-shell). We found that Pt2ML/Os has the highest activity (compared to pure Pt and to the Pt3Os alloy) because the 0.37 eV barrier decreases to 0.23 eV. To understand what aspects of the core shell structure lead to this improved performance, we considered the effect on ORR of compressing the alloy slab to the dimensions of pure Pt. However this had little effect, with the same RDS barrier 0.37 eV. This shows that the ligand effect (the electronic structure modification resulting from the Os substrate) plays a more important role than the strain effect, and is responsible for the improved activity of the core- shell catalyst. Experimental materials characterization proves the core-shell feature of our catalyst. The electrochemical experiment for Pt2ML/Os/C showed 3.5 to 5 times better ORR activity at 0.9V (vs. NHE) in 0.1M HClO4 solution at 25 degrees C as compared to those of commercially available Pt/C. The excellent correlation between experimental half potential and the OH binding energies and RDS barriers validate the feasibility of predicting catalyst activity using QM calculation and a simple Langmuir–Hinshelwood model.
In part II, we used QM calculations to study methane stream reforming on a Ni-alloy catalyst surfaces for solid oxide fuel cell (SOFC) application. SOFC has wide fuel adaptability but the coking and sulfur poisoning will reduce its stability. Experimental results suggested that the Ni4Fe alloy improves both its activity and stability compared to pure Ni. To understand the atomistic origin of this, we carried out QM calculations on surface segregation and found that the most stable configuration for Ni4Fe has a Fe atom distribution of (0%, 50%, 25%, 25%, 0%) starting at the bottom layer. We calculated that the binding of C atoms on the Ni4Fe surface is 142.9 Kcal/mol, which is about 10 Kcal/mol weaker compared to the pure Ni surface. This weaker C binding energy is expected to make coke formation less favorable, explaining why Ni4Fe has better coking resistance. This result confirms the experimental observation. The reaction energy barriers for CHx decomposition and C binding on various alloy surface, Ni4X (X=Fe, Co, Mn, and Mo), showed Ni4Fe, Ni4Co, and Fe4Mn all have better coking resistance than pure Ni, but that only Ni4Fe and Fe4Mn have (slightly) improved activity compared to pure Ni.
In part III, we used QM to examine the proton transport in doped perovskite-ceramics. Here we used a 2x2x2 supercell of perovskite with composition Ba8X7M1(OH)1O23 where X=Ce or Zr and M=Y, Gd, or Dy. Thus in each case a 4+ X is replace by a 3+ M plus a proton on one O. Here we predicted the barriers for proton diffusion allowing both includes intra-octahedron and inter-octahedra proton transfer. Without any restriction, we only observed the inter-octahedra proton transfer with similar energy barrier as previous computational work but 0.2 eV higher than experimental result for Y doped zirconate. For one restriction in our calculations is that the Odonor-Oacceptor atoms were kept at fixed distances, we found that the barrier difference between cerates/zirconates with various dopants are only 0.02~0.03 eV. To fully address performance one would need to examine proton transfer at grain boundaries, which will require larger scale ReaxFF reactive dynamics for systems with millions of atoms. The QM calculations used here will be used to train the ReaxFF force field.
Resumo:
The consumption of oxygen in Asellus aquaticus was measured to find if there existed a periodicity in the consumption of oxygen and how this showed itself during the course of the day, year and in various experimental conditions. From the figures obtained comparative values were calculated and from these curves were plotted of the changes in the consumption of oxygen during the day and year.