991 resultados para constituent ordering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present first-principles density-functional-theory-based calculations to determine the effects of the strength of on-site electron correlation, magnetic ordering, pressure and Se vacancies on phonon frequencies and electronic structure of FeSe1-x. The theoretical equilibrium structure (lattice parameters) of FeSe depends sensitively on the value of the Hubbard parameter U of on-site correlation and magnetic ordering. Our results suggest that there is a competition between different antiferromagnetic states due to comparable magnetic exchange couplings between first- and second-neighbor Fe sites. As a result, a short range order of stripe antiferromagnetic type is shown to be relevant to the normal state of FeSe at low temperature. We show that there is a strong spin-phonon coupling in FeSe (comparable to its superconducting transition temperature) as reflected in large changes in the frequencies of certain phonons with different magnetic ordering, which is used to explain the observed hardening of a Raman-active phonon at temperatures (similar to 100 K) where magnetic ordering sets in. The symmetry of the stripe antiferromagnetic phase permits an induced stress with orthorhombic symmetry, leading to orthorhombic strain as a secondary order parameter at the temperature of magnetic ordering. The presence of Se vacancies in FeSe gives rise to a large peak in the density of states near the Fermi energy, which could enhance the superconducting transition temperature within the BCS-like picture.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical test has been presented to establish the nature of the kinetic pathways for the decomposition of Fe-12 at.% Si alloy below the metastable tricritical point. The results, based on the measurements of saturation magnetization, establish that a congruent ordering from B2 --> D0(3) precedes the development of a B2 + D0(3) two-phase field, consistent with the predictions in 1976 of Allen and Cahn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable-temperature X-ray diffraction studies of C70 suggest the occurrence of two phase transitions around 350 and 280 K where the high-temperature phase is fcc and the low-temperature phase is monoclinic, best described as a distorted hcp structure with a doubled unit cell; two like-phases (possibly hcp) seem to coexist in the 280-350 K range. Application of pressure gives rise to three distinct transitions associated with characteristic pressure coefficients, the extrapolated values of the transition temperatures at ambient pressure being around 340, 325 and 270 K. Pressure delineates closely related phases Of C70 just as in the case Of C60 which exhibits two orientational phase transitions at high pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence and Raman scattering experiments have been carried out on single crystals of C70 up to 31 GPa to investigate the effect of pressure on the optical band gap, vibrational modes and stability of the molecule. The photoluminescence band shifts to lower energies and the pressure dependence of the band maxima yields the hydrostatic deformation potential to be 2.15 eV. The slope changes in the pressure dependence of peak positions and linewidths of the Raman modes associated with the intramolecular vibrations at 1 GPa mark the known face-centred cubic-->rhombohedral orientational ordering transition. The reversible amorphization in C70 at P > 20 GPa has been compared with the irreversible amorphization in C60 at P > 22 GPa in terms of carbon-carbon distance between the neighbouring molecules at the threshold transition pressures, in conjunction with the interplay between the intermolecular and intramolecular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron microscopy and diffraction studies of ordering in stoichiometric Ni-20%W and off-stoichiometric Ni-15%W alloys have been carried out. The specimens of Ni-20%W were first disordered at 1398 K for 4 h and then quenched rapidly into water. Short range order (SRO) spots were observed at {1 1/2 0}* positions. Two hitherto unknown metastable phases: D-2h(25)-Ni2W and DO22-Ni3W were observed in the diffraction patterns. Long range order (LRO) transformations were studied at 1103 and 1213 K. Kinetics and mechanism of transformations have been identified. Ni-15%W specimens were solution treated at 1523 K for 1 h followed by quenching in water. SRO spots similar to those found in Ni-20%W were observed in this alloy as well. The transition to LRO was studied at 1093 K. Distinct Ni4W precipitates could be observed after 5 h of annealing at this temperature. After 100 h of annealing precipitates were found to grow into faceted shape coherent with the disordered matrix. After prolonged annealing for over 150 h the Ni4W precipitates began to lose coherency by the generation of misfit dislocations. The microstructural observations have been compared for the stoichiometric and off-stoichiometric alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamond like carbon films deposited by RF magnetron sputter deposition technique contain both SP2 and SP3 hybridized carbons. These films are structurally disordered and inhomogeneous. By the application of electric field across the film, these films are transformed to a more orderly structured diamond like carbon, bringing homogenity in the film. This transformation has resulted in the increase of the reflectivity of the metal(Aluminum), which is used as one of the electrodes for applying the electric field, by 5 times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordering of Mn3+ and Mn4+ ions occurs in the rare earth manganates of the general composition Ln(1-x)A(x)MnO(3) (Ln rare earth, A = Ca, Sr). Such charge-ordering is associated with antiferromagnetic and insulating properties. This phenomenon is to be contrasted with the ferromagnetic metallic behavior that occurs when double-exchange between the Mn3+ and Mn4+ ions predominates. Two distinct types of charge-ordering can be delineated. In one, a ferromagnetic metallic (FMM) state transforms to the charge-ordered (CO) state on cooling. In the other scenario, the CO state is found in the paramagnetic ground stale and there is no ferromagnetism down to the lowest temperatures. Magnetic fields transform the CO state to the FMM state, when the average radius of the A-site cations is sufficiently large ([r(A)] > 1.17 Angstrom). Chemical melting of the CO state by Cr3+ substitution in the Mn site is also found only when [r(A)] greater than or similar to 1.17 Angstrom. The effect of the size of the A-cations on the Mn-O-Mn angle is not enough to explain the observed variations of the charge-ordering temperature as well as the ferromagnetic Curie temperature T-c. An explanation based on a competition between the Mn and A-cation orbitals for sigma-bonding with the oxygen rho(sigma) orbitals is considered to account for the large changes in T-c and hence the true bandwidth, with [r(A]). Effects of radiation, electric field, and other factors on the CO state are discussed along with charge-ordering in other manganate systems. Complex phase transitions, accompanied by changes in electronic and magnetic properties, occur in manganates with critical values of(rA) Or bandwidth. Charge-ordering is found in layered manganates, BixCa1-xMnO3 and CaMnO3-delta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the magnetic and structural properties of the lanthanum manganite-based double-exchange magnets exhibiting colossal magnetoresistance. A model Hamiltonian containing the double-exchange, superexchange, and the Hubbard terms, with parameters obtained from density–functional calculations (Ref. 1), is studied within a mean-field approximation both at temperature T=0 and T>0 and with the effects of the magnetic field included. The phase diagrams we obtain with magnetic and charge-ordered phases enable us to examine the competition between the double- and superexchange terms as functions of doping and temperature. Our theoretical study provides a qualitative understanding of the phase diagram observed in the experiments. © 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symmetrized density-matrix renormalization-group approach is applied within the extended Hubbard-Peierls model (with parameters U/t, V/t, and bond alternation delta) to study the ordering of the lowest one-photon (1(1)B(u)(-)) and two-photon (2(1)A(g)(+)) states in one-dimensional conjugated systems with chain lengths N up to N = 80 sites. Three different types of crossovers are studied, as a function of U/t, delta, and N. The ''U crossover'' emphasizes the larger ionic character of the 2A(g) state compared to the lowest triplet excitation. The ''delta crossover'' shows strong dependence on both N and U/t. the ''N crossover'' illustrates the more localized nature of the 2A(g) excitation relative to the 1B(u) excitation at intermediate correlation strengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chalcopyrite in contact with water is thermodynamically unstable in the presence of oxygen. Oxidation of chalcopyrite may take place due to various factors, e.g., geological environment, mining/comminution, and storage. In this work oxidation of chalcopyrite has been investigated through interfacial electrokinetics. The characteristics of samples obtained from different geological locations as well as the effects of ageing and laboratory oxidation have been delineated. Variation of the solid-liquid ratio was found to have a significant effect on the zeta-potential characteristics of chalcopyrite. The role of constituent metal ions, namely copper and iron, has been studied in the absence and presence of externally added metal ions. The results indicated that the ratio of Cu/Fe on the surface of oxidized chalcopyrite determines the Stern layer potential and under appropriate solution chemistry conditions influences charge reversals. The mineral surfaces, thus, could be either copper-rich or iron-rich as reflected by a shift in pH(iep),,(s). The observed charge reversals have been explained on the basis of a model proposed by James and Healy. (C) 1997 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge ordering in rare earth manganates of the type Ln(0.5)A(0.5)MnO(3) (Ln = rare earth, A = alkaline earth) is highly sensitive to the average radius of the A-site cations, [r(A)]. Tn the small [r(A)] regime (e.g., Y0.5Ca0.5MnO3), charge ordering occurs in the paramagnetic state, the transformation to an antiferromagnetic state occurring at still lower temperatures. At moderate [r(A)] values (e.g., Nd0.5Sr0.5MnO3), a ferromagnetic metallic state transforms to a charge-ordered antiferromagnetic state with cooling. These two distinct types of charge ordering and associated properties are explained in terms of the variation of the exchange couplings J(FM) and J(AFM) with [r(A)] and the invariance of the single-ion Jahn-Teller energy with [r(A)]. A qualitative temperature-[r(A)] phase diagram, consistent with the experimental observations, has been constructed to describe the properties of the manganates in the different [r(A)] regimes. (C) 1997 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several doped 6H hexagonal ruthenates, having the general formula Ba3MRu2O9, have been studied over a significant period of time to understand the unusual magnetism of ruthenium metal. However, among them, the M = Fe compound appears different since it is observed that unlike others, the 3d Fe ions and 4d Ru ions can easily exchange their crystallographic positions, and as a result many possible magnetic interactions become realizable. The present study involving several experimental methods on this compound establishes that the magnetic structure of Ba3FeRu2O9 is indeed very different from all other 6H ruthenates. Local structural study reveals that the possible Fe/Ru site disorder further extends to create local chemical inhomogeneity, affecting the high-temperature magnetism of this material. There is a gradual decrease of Fe-57 Mossbauer spectral intensity with decreasing temperature (below 100 K), which reveals that there is a large spread in the magnetic ordering temperatures, corresponding to many spatially inhomogeneous regions. However, finally at about 25 K, the whole compound is found to take up a global glasslike magnetic ordering.