980 resultados para conidial dispersion
Resumo:
The aim of this work was to simulate the radionuclides dispersion in the surrounding area of a coal-fired power plant, operational during the last 25 years. The dispersion of natural radionuclides (236Ra, 232Th and 40K) was simulated by a Gaussian plume dispersion model with three different stability classes estimating the radionuclides concentration at ground level. Measurements of the environmen-tal activity concentrations were carried out by γ-spectrometry and compared with results from the air dispersion and deposition model which showed that the stabil-ity class D causes the dispersion to longer distances up to 20 km from the stacks.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
The impact of atrial dispersion of refractoriness (Disp_A) in the inducibility and maintenance of atrial fibrillation (AF) has not been fully resolved. AIM: To study the Disp_A and the vulnerability (A_Vuln) for the induction of self-limited (<60 s) and sustained episodes of AF. METHODS AND RESULTS: Forty-seven patients with paroxysmal AF (PAF): 29 patients without structural heart disease and 18 with hypertensive heart disease. Atrial effective refractory period (ERP) was assessed at five sites--right atrial appendage and low lateral right atrium, high interatrial septum, proximal and distal coronary sinus. We compared three groups: group A - AF not inducible (n=13); group B - AF inducible, self-limited (n=18); group C - AF inducible, sustained (n=16). Age, lone AF, hypertension, left atrial and left ventricular (LV) dimensions, LV systolic function, duration of AF history, atrial flutter/tachycardia, previous antiarrhythmics, and Disp_A were analysed with logistic regression to determine association with A_Vuln for AF inducibility. The ERP at different sites showed no differences among the groups. Group A had a lower Disp_A compared to group B (47+/-20 ms vs 82+/-65 ms; p=0.002), and when compared to group C (47+/-20 ms vs 80+/-55 ms; p=0.008). There was no significant difference in Disp_A between groups B and C. By means of multivariate regression analysis, the only predictor of A_Vuln was Disp_A (p=0.04). Conclusion: In patients with PAF, increased Disp_A represents an electrophysiological marker of A_Vuln. Inducibility of both self-limited and sustained episodes of AF is associated with similar values of Disp_A. These findings suggest that the maintenance of AF is influenced by additional factors.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dispersion of returns has gained a lot of attention as a measure to distinguish good and bad investment opportunities time. In the following dissertation, the cross-sectional returns volatility is analyzed over a fifteen year period across the S&P100 Index composition. The main inference drawn from the data sample is that the canonical measure of dispersion is highly macro-risk driven and therefore more biased towards returns volatility rather than its correlation component.
Resumo:
A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.
Resumo:
The kinetics of GnP dispersion in polypropylene melt was studied using a prototype small scale modular extensional mixer. Its modular nature enabled the sequential application of a mixing step, melt relaxation, and a second mixing step. The latter could reproduce the flow conditions on the first mixing step, or generate milder flow conditions. The effect of these sequences of flow constraints upon GnP dispersion along the mixer length was studied for composites with 2 and 10 wt.% GnP. The samples collected along the first mixing zone showed a gradual decrease of number and size of GnP agglomerates, at a rate that was independent of the flow conditions imposed to the melt, but dependent on composition. The relaxation zone induced GnP re-agglomeration, and the application of a second mixing step caused variable dispersion results that were largely dependent on the hydrodynamic stresses generated.
Resumo:
Artigo publicado a convite da Society for Polymer Engineers
Resumo:
Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology
Resumo:
Understanding the mixing process of complex composite materials is fundamental in several industrial processes. For instance, the dispersion of fillers in polymer melt matrices is commonly employed to manufacture polymer composites, using a twin-screw extruder. The effectiveness of the filler dispersion depends not only on the complex flow patterns generated, but also on the polymer melt rheological behavior. Therefore, the availability of a numerical tool able to predict mixing, taking into account both fluid and particles phases would be very useful to increase the process insight, and thus provide useful guidelines for its optimization. In this work, a new Eulerian-Lagrangian numerical solver is developed OpenFOAM® computational library, and used to better understand the mechanisms determining the dispersion of fillers in polymer matrices. Particular attention will be given to the effect of the rheological model used to represent the fluid behavior, on the level of dispersion obtained. For the Eulerian phase the averaged volume fraction governing equations (conservation of mass and linear momentum) are used to describe the fluid behavior. In the case of the Lagrangian phase, Newton’s second law of motion is used to compute the particles trajectories and velocity. To study the effect of fluid behavior on the filler dispersion, several systems are modeled considering different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to correlate the fluid and particle characteristics on the effectiveness of mixing and morphology obtained.
Resumo:
The authors also acknowledge Centre for Textile Science and Technology (University of Minho) and FIBRENAMICS PLATFORMfor providing required conditions for this research. Sincere thanks are also due to Mr. Pedro Samuel Leite and Mr. Carlos Jesus for their kind help in sample preparation and testing.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
OBJECTIVE - Studies have shown that therapy with beta-blockers reduces mortality in patients with heart failure. However, there are no studies describing the effects of propranolol on the QT dispersion in this population. The objective of this study was to assess the electrophysiological profile, mainly QT dispersion, of patients with heart failure regularly using propranolol. METHODS - Fifteen patients with heart failure and using propranolol were assessed over a period of 12 months. Twelve-lead electrocardiograms (ECG) were recorded prior to the onset of beta-blocker therapy and after 3 months of drug use. RESULTS - A significant reduction in heart rate, in QT dispersion and in QTc dispersion was observed, as was also an increase in the PR interval and in the QT interval, after the use of propranolol in an average dosage of 100 mg/day. CONCLUSION - Reduction in QT dispersion in patients with heart failure using propranolol may explain the reduction in the risk of sudden cardiac death with beta-blocker therapy, in this specific group of patients.