899 resultados para computer vision, geometric variations, congealing, unsupervised image alignment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To define and evaluate a Computer-Vision (CV) method for scoring Paced Finger-Tapping (PFT) in Parkinson's disease (PD) using quantitative motion analysis of index-fingers and to compare the obtained scores to the UPDRS (Unified Parkinson's Disease Rating Scale) finger-taps (FT). Background: The naked-eye evaluation of PFT in clinical practice results in coarse resolution to determine PD status. Besides, sensor mechanisms for PFT evaluation may cause patients discomfort. In order to avoid cost and effort of applying wearable sensors, a CV system for non-invasive PFT evaluation is introduced. Methods: A database of 221 PFT videos from 6 PD patients was processed. The subjects were instructed to position their hands above their shoulders besides the face and tap the index-finger against the thumb consistently with speed. They were facing towards a pivoted camera during recording. The videos were rated by two clinicians between symptom levels 0-to-3 using UPDRS-FT. The CV method incorporates a motion analyzer and a face detector. The method detects the face of testee in each video-frame. The frame is split into two images from face-rectangle center. Two regions of interest are located in each image to detect index-finger motion of left and right hands respectively. The tracking of opening and closing phases of dominant hand index-finger produces a tapping time-series. This time-series is normalized by the face height. The normalization calibrates the amplitude in tapping signal which is affected by the varying distance between camera and subject (farther the camera, lesser the amplitude). A total of 15 features were classified using K-nearest neighbor (KNN) classifier to characterize the symptoms levels in UPDRS-FT. The target ratings provided by the raters were averaged. Results: A 10-fold cross validation in KNN classified 221 videos between 3 symptom levels with 75% accuracy. An area under the receiver operating characteristic curves of 82.6% supports feasibility of the obtained features to replicate clinical assessments. Conclusions: The system is able to track index-finger motion to estimate tapping symptoms in PD. It has certain advantages compared to other technologies (e.g. magnetic sensors, accelerometers etc.) for PFT evaluation to improve and automate the ratings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inferences about leaf anatomical characteristics had largely been made by manually measuring diverse leaf regions, such as cuticle, epidermis and parenchyma to evaluate differences caused by environmental variables. Here we tested an approach for data acquisition and analysis in ecological quantitative leaf anatomy studies based on computer vision and pattern recognition methods. A case study was conducted on Gochnatia polymorpha (Less.) Cabrera (Asteraceae), a Neotropical savanna tree species that has high phenotypic plasticity. We obtained digital images of cross-sections of its leaves developed under different light conditions (sun vs. shade), different seasons (dry vs. wet) and in different soil types (oxysoil vs. hydromorphic soil), and analyzed several visual attributes, such as color, texture and tissues thickness in a perpendicular plane from microscopic images. The experimental results demonstrated that computational analysis is capable of distinguishing anatomical alterations in microscope images obtained from individuals growing in different environmental conditions. The methods presented here offer an alternative way to determine leaf anatomical differences. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This paper describes a low-cost system that allows the user to visualize different glasses models in live video. The user can also move the glasses to adjust its position on the face. The system, which runs at 9.5 frames/s on general-purpose hardware, has a homeostatic module that keeps image parameters controlled. This is achieved by using a camera with motorized zoom, iris, white balance, etc. This feature can be specially useful in environments with changing illumination and shadows, like in an optical shop. The system also includes a face and eye detection module and a glasses management module.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]This paper describes some simple but useful computer vision techniques for human-robot interaction. First, an omnidirectional camera setting is described that can detect people in the surroundings of the robot, giving their angular positions and a rough estimate of the distance. The device can be easily built with inexpensive components. Second, we comment on a color-based face detection technique that can alleviate skin-color false positives. Third, a simple head nod and shake detector is described, suitable for detecting affirmative/negative, approval/dissaproval, understanding/disbelief head gestures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In emergency situations, where time for blood transfusion is reduced, the O negative blood type (the universal donor) is administrated. However, sometimes even the universal donor can cause transfusion reactions that can be fatal to the patient. As commercial systems do not allow fast results and are not suitable for emergency situations, this paper presents the steps considered for the development and validation of a prototype, able to determine blood type compatibilities, even in emergency situations. Thus it is possible, using the developed system, to administer a compatible blood type, since the first blood unit transfused. In order to increase the system’s reliability, this prototype uses different approaches to classify blood types, the first of which is based on Decision Trees and the second one based on support vector machines. The features used to evaluate these classifiers are the standard deviation values, histogram, Histogram of Oriented Gradients and fast Fourier transform, computed on different regions of interest. The main characteristics of the presented prototype are small size, lightweight, easy transportation, ease of use, fast results, high reliability and low cost. These features are perfectly suited for emergency scenarios, where the prototype is expected to be used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.

The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.

Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.

Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.

The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950s and 1960s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and bridge type. This paper investigates the use of computer vision systems for SHM. A series of field tests have been carried out to test the accuracy of displacement measurements using contactless methods. A video image of each test was processed using a modified version of the optical flow tracking method to track displacement. These results have been validated with an established measurement method using linear variable differential transformers (LVDTs). The results obtained from the algorithm provided an accurate comparison with the validation measurements. The calculated displacements agree within 2% of the verified LVDT measurements, a number of post processing methods were then applied to attempt to reduce this error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950’s and 1960’s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and system cost. This paper investigates the development of a low cost portable SHM system using commercially available cameras and computer vision techniques. A series of laboratory tests have been carried out to test the accuracy of displacement measurements using contactless methods. The results from each of the tests have been validated with established measurement methods, such as linear variable differential transformers (LVDTs). A video image of each test was processed using two different digital image correlation programs. The results obtained from the digital image correlation methods provided an accurate comparison with the validation measurements. The calculated displacements agree within 4% of the verified measurements LVDT measurements in most cases confirming the suitability full camera based SHM systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of unmanned aircraft into civil airspace is a complex issue. One key question is whether unmanned aircraft can operate just as safely as their manned counterparts. The absence of a human pilot in unmanned aircraft automatically points to a deficiency that is the lack of an inherent see-and-avoid capability. To date, regulators have mandated that an “equivalent level of safety” be demonstrated before UAVs are permitted to routinely operate in civil airspace. This chapter proposes techniques, methods, and hardware integrations that describe a “sense-and-avoid” system designed to address the lack of a see-and-avoid capability in UAVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel computer vision techniques have been developed for automatic monitoring of crowed environments such as airports, railway stations and shopping malls. Using video feeds from multiple cameras, the techniques enable crowd counting, crowd flow monitoring, queue monitoring and abnormal event detection. The outcome of the research is useful for surveillance applications and for obtaining operational metrics to improve business efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis developed a method for real-time and handheld 3D temperature mapping using a combination of off-the-shelf devices and efficient computer algorithms. It contributes a new sensing and data processing framework to the science of 3D thermography, unlocking its potential for application areas such as building energy auditing and industrial monitoring. New techniques for the precise calibration of multi-sensor configurations were developed, along with several algorithms that ensure both accurate and comprehensive surface temperature estimates can be made for rich 3D models as they are generated by a non-expert user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.