970 resultados para computer algorithm
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
Recently Adams and Bischof (1994) proposed a novel region growing algorithm for segmenting intensity images. The inputs to the algorithm are the intensity image and a set of seeds - individual points or connected components - that identify the individual regions to be segmented. The algorithm grows these seed regions until all of the image pixels have been assimilated. Unfortunately the algorithm is inherently dependent on the order of pixel processing. This means, for example, that raster order processing and anti-raster order processing do not, in general, lead to the same tessellation. In this paper we propose an improved seeded region growing algorithm that retains the advantages of the Adams and Bischof algorithm fast execution, robust segmentation, and no tuning parameters - but is pixel order independent. (C) 1997 Elsevier Science B.V.
Resumo:
Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.
Resumo:
A graph clustering algorithm constructs groups of closely related parts and machines separately. After they are matched for the least intercell moves, a refining process runs on the initial cell formation to decrease the number of intercell moves. A simple modification of this main approach can deal with some practical constraints, such as the popular constraint of bounding the maximum number of machines in a cell. Our approach makes a big improvement in the computational time. More importantly, improvement is seen in the number of intercell moves when the computational results were compared with best known solutions from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Extended gcd computation is interesting itself. It also plays a fundamental role in other calculations. We present a new algorithm for solving the extended gcd problem. This algorithm has a particularly simple description and is practical. It also provides refined bounds on the size of the multipliers obtained.
Resumo:
Qu-Prolog is an extension of Prolog which performs meta-level computations over object languages, such as predicate calculi and lambda-calculi, which have object-level variables, and quantifier or binding symbols creating local scopes for those variables. As in Prolog, the instantiable (meta-level) variables of Qu-Prolog range over object-level terms, and in addition other Qu-Prolog syntax denotes the various components of the object-level syntax, including object-level variables. Further, the meta-level operation of substitution into object-level terms is directly represented by appropriate Qu-Prolog syntax. Again as in Prolog, the driving mechanism in Qu-Prolog computation is a form of unification, but this is substantially more complex than for Prolog because of Qu-Prolog's greater generality, and especially because substitution operations are evaluated during unification. In this paper, the Qu-Prolog unification algorithm is specified, formalised and proved correct. Further, the analysis of the algorithm is carried out in a frame-work which straightforwardly allows the 'completeness' of the algorithm to be proved: though fully explicit answers to unification problems are not always provided, no information is lost in the unification process.
Resumo:
We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.
Resumo:
Purpose: The objective of this study is to evaluate blood glucose (BG) control efficacy and safety of 3 insulin protocols in medical intensive care unit (MICU) patients. Methods: This was a multicenter randomized controlled trial involving 167 MICU patients with at least one BG measurement +/- 150 mg/dL and one or more of the following: mechanical ventilation, systemic inflammatory response syndrome, trauma, or burns. The interventions were computer-assisted insulin protocol (CAIP), with insulin infusion maintaining BG between 100 and 130 mg/dL; Leuven protocol, with insulin maintaining BG between 80 and 110 mg/dL; or conventional treatment-subcutaneous insulin if glucose > 150 mg/dL. The main efficacy outcome was the mean of patients` median BG, and the safety outcome was the incidence of hypoglycemia (<= 40 mg/dL). Results: The mean of patients` median BG was 125.0, 127.1, and 158.5 mg/dL for CAIP, Leuven, and conventional treatment, respectively (P = .34, CAIP vs Leuven; P < .001, CAIP vs conventional). In CAIP, 12 patients (21.4%) had at least one episode of hypoglycemia vs 24 (41.4%) in Leuven and 2 (3.8%) in conventional treatment (P = .02, CAIP vs Leuven; P = .006, CAIP vs conventional). Conclusions: The CAIP is safer than and as effective as the standard strict protocol for controlling glucose in MICU patients. Hypoglycemia was rare under conventional treatment. However, BG levels were higher than with IV insulin protocols. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The phase estimation algorithm is so named because it allows an estimation of the eigenvalues associated with an operator. However, it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.
Resumo:
A new algorithm, PfAGSS, for predicting 3' splice sites in Plasmodium falciparum genomic sequences is described. Application of this program to the published P. falciparum chromosome 2 and 3 data suggests that existing programs result in a high error rate in assigning 3' intron boundaries. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Motivation: A consensus sequence for a family of related sequences is, as the name suggests, a sequence that captures the features common to most members of the family. Consensus sequences are important in various DNA sequencing applications and are a convenient way to characterize a family of molecules. Results: This paper describes a new algorithm for finding a consensus sequence, using the popular optimization method known as simulated annealing. Unlike the conventional approach of finding a consensus sequence by first forming a multiple sequence alignment, this algorithm searches for a sequence that minimises the sum of pairwise distances to each of the input sequences. The resulting consensus sequence can then be used to induce a multiple sequence alignment. The time required by the algorithm scales linearly with the number of input sequences and quadratically with the length of the consensus sequence. We present results demonstrating the high quality of the consensus sequences and alignments produced by the new algorithm. For comparison, we also present similar results obtained using ClustalW. The new algorithm outperforms ClustalW in many cases.
Resumo:
The Lanczos algorithm is appreciated in many situations due to its speed. and economy of storage. However, the advantage that the Lanczos basis vectors need not be kept is lost when the algorithm is used to compute the action of a matrix function on a vector. Either the basis vectors need to be kept, or the Lanczos process needs to be applied twice. In this study we describe an augmented Lanczos algorithm to compute a dot product relative to a function of a large sparse symmetric matrix, without keeping the basis vectors.
Resumo:
5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 8th. World Congress on Computational Mechanics (WCCM8)