985 resultados para component classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper an attempt has been made to determine the number of Premature Ventricular Contraction (PVC) cycles accurately from a given Electrocardiogram (ECG) using a wavelet constructed from multiple Gaussian functions. It is difficult to assess the ECGs of patients who are continuously monitored over a long period of time. Hence the proposed method of classification will be helpful to doctors to determine the severity of PVC in a patient. Principal Component Analysis (PCA) and a simple classifier have been used in addition to the specially developed wavelet transform. The proposed wavelet has been designed using multiple Gaussian functions which when summed up looks similar to that of a normal ECG. The number of Gaussians used depends on the number of peaks present in a normal ECG. The developed wavelet satisfied all the properties of a traditional continuous wavelet. The new wavelet was optimized using genetic algorithm (GA). ECG records from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database have been used for validation. Out of the 8694 ECG cycles used for evaluation, the classification algorithm responded with an accuracy of 97.77%. In order to compare the performance of the new wavelet, classification was also performed using the standard wavelets like morlet, meyer, bior3.9, db5, db3, sym3 and haar. The new wavelet outperforms the rest

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three coupled knowledge transfer partnerships used pattern recognition techniques to produce an e-procurement system which, the National Audit Office reports, could save the National Health Service £500 m per annum. An extension to the system, GreenInsight, allows the environmental impact of procurements to be assessed and savings made. Both systems require suitable products to be discovered and equivalent products recognised, for which classification is a key component. This paper describes the innovative work done for product classification, feature selection and reducing the impact of mislabelled data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: A major problem in Chagas disease donor screening is the high frequency of samples with inconclusive results. The objective of this study was to describe patterns of serologic results among donors to the three Brazilian REDS-II blood centers and correlate with epidemiologic characteristics. STUDY DESIGN AND METHODS: The centers screened donor samples with one Trypanosoma cruzi lysate enzyme immunoassay (EIA). EIA-reactive samples were tested with a second lysate EIA, a recombinant-antigen based EIA, and an immunfluorescence assay. Based on the serologic results, samples were classified as confirmed positive (CP), probable positive (PP), possible other parasitic infection (POPI), and false positive (FP). RESULTS: In 2007 to 2008, a total of 877 of 615,433 donations were discarded due to Chagas assay reactivity. The prevalences (95% confidence intervals [CIs]) among first-time donors for CP, PP, POPI, and FP patterns were 114 (99-129), 26 (19-34), 10 (5-14), and 96 (82-110) per 100,000 donations, respectively. CP and PP had similar patterns of prevalence when analyzed by age, sex, education, and location, suggesting that PP cases represent true T. cruzi infections; in contrast the demographics of donors with POPI were distinct and likely unrelated to Chagas disease. No CP cases were detected among 218,514 repeat donors followed for a total of 718,187 person-years. CONCLUSION: We have proposed a classification algorithm that may have practical importance for donor counseling and epidemiologic analyses of T. cruzi-seroreactive donors. The absence of incident T. cruzi infections is reassuring with respect to risk of window phase infections within Brazil and travel-related infections in nonendemic countries such as the United States.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazilian sugarcane spirits were analyzed to elucidate similarities and dissimilarities by principal component analysis. Nine aldehydes, six alcohols, and six metal cations were identified and quantified. Isobutanol (LD 202.9 mu gL-1), butiraldehyde (0.08-0.5 mu gL-1), ethanol (39-47% v/v), and copper (371-6068 mu gL-1) showed marked similarities, but the concentration levels of n-butanol (1.6-7.3 mu gL-1), sec-butanol (LD 89 mu gL-1), formaldehyde (0.1-0.74 mu gL-1), valeraldehyde (0.04-0.31 mu gL-1), iron (8.6-139.1 mu gL-1), and magnesium (LD 1149 mu gL-1) exhibited differences from samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a chemotaxonomic analysis of a database of triterpenoid compounds from the Celastraceae family using principal component analysis (PCA). The numbers of occurrences of thirty types of triterpene skeleton in different tribes of the family were used as variables. The study shows that PCA applied to chemical data can contribute to an intrafamilial classification of Celastraceae, once some questionable taxa affinity was observed, from chemotaxonomic inferences about genera and they are in agreement with the phylogeny previously proposed. The inclusion of Hippocrateaceae within Celastraceae is supported by the triterpene chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coconut water is a natural isotonic, nutritive, and low-caloric drink. Preservation process is necessary to increase its shelf life outside the fruit and to improve commercialization. However, the influence of the conservation processes, antioxidant addition, maturation time, and soil where coconut is cultivated on the chemical composition of coconut water has had few arguments and studies. For these reasons, an evaluation of coconut waters (unprocessed and processed) was carried out using Ca, Cu, Fe, K, Mg, Mn, Na, Zn, chloride, sulfate, phosphate, malate, and ascorbate concentrations and chemometric tools. The quantitative determinations were performed by electrothermal atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and capillary electrophoresis. The results showed that Ca, K, and Zn concentrations did not present significant alterations between the samples. The ranges of Cu, Fe, Mg, Mn, PO (4) (3-) , and SO (4) (2-) concentrations were as follows: Cu (3.1-120 A mu g L(-1)), Fe (60-330 A mu g L(-1)), Mg (48-123 mg L(-1)), Mn (0.4-4.0 mg L(-1)), PO (4) (3-) (55-212 mg L(-1)), and SO (4) (2-) (19-136 mg L(-1)). The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to differentiate unprocessed and processed samples. Multivariated analysis (PCA and HCA) were compared through one-way analysis of variance with Tukey-Kramer multiple comparisons test, and p values less than 0.05 were considered to be significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to differentiate and characterize Madeira wines according to main grape varieties, the volatile composition (higher alcohols, fatty acids, ethyl esters and carbonyl compounds) was determined for 36 monovarietal Madeira wine samples elaborated from Boal, Malvazia, Sercial and Verdelho white grape varieties. The study was carried out by headspace solid-phase microextraction technique (HS-SPME), in dynamic mode, coupled with gas chromatography–mass spectrometry (GC–MS). Corrected peak area data for 42 analytes from the above mentioned chemical groups was used for statistical purposes. Principal component analysis (PCA) was applied in order to determine the main sources of variability present in the data sets and to establish the relation between samples (objects) and volatile compounds (variables). The data obtained by GC–MS shows that the most important contributions to the differentiation of Boal wines are benzyl alcohol and (E)-hex-3-en-1-ol. Ethyl octadecanoate, (Z)-hex-3-en-1-ol and benzoic acid are the major contributions in Malvazia wines and 2-methylpropan-1-ol is associated to Sercial wines. Verdelho wines are most correlated with 5-(ethoxymethyl)-furfural, nonanone and cis-9-ethyldecenoate. A 96.4% of prediction ability was obtained by the application of stepwise linear discriminant analysis (SLDA) using the 19 variables that maximise the variance of the initial data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirty-six Madeira wine samples from Boal, Malvazia, Sercial and Verdelho white grape varieties were analyzed in order to estimate the free fraction of monoterpenols and C13 norisoprenoids (terpenoid compounds) using dynamic headspace solid phase micro-extraction (HS-SPME) technique coupled with gas chromatography–mass spectrometry (GC–MS). The average values from three vintages (1998–2000) show that these wines have characteristic profiles of terpenoid compounds. Malvazia wines exhibits the highest values of total free monoterpenols, contrary to Verdelho wines which had the lowest levels of terpenoids but produced the highest concentration of farnesol. The use of multivariate analysis techniques allows establishing relations between the compounds and the varieties under investigation. Principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to the obtained matrix data. A good separation and classification power between the four groups as a function of their varietal origin was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed: 1) to classify ingredients according to the digestible amino acid (AA) profile; 2) to determine ingredients with AA profile closer to the ideal for broiler chickens; and 3) to compare digestible AA profiles from simulated diets with the ideal protein profile. The digestible AA levels of 30 ingredients were compiled from the literature and presented as percentages of lysine according to the ideal protein concept. Cluster and principal component analyses (exploratory analyses) were used to compose and describe groups of ingredients according to AA profiles. Four ingredient groups were identified by cluster analysis, and the classification of the ingredients within each of these groups was obtained from a principal component analysis, showing 11 classes of ingredients with similar digestible AA profiles. The ingredients with AA profiles closer to the ideal protein were meat and bone meal 45, fish meal 60 and wheat germ meal, all of them constituting Class 1; the ingredients from the other classes gradually diverged from the ideal protein. Soybean meal, which is the main protein source for poultry, showed good AA balance since it was included in Class 3. on the contrary, corn, which is the main energy source in poultry diets, was classified in Class 8. Dietary AA profiles were improved when corn and/or soybean meal were partially or totally replaced in the simulations by ingredients with better AA balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on a sensor array able to distinguish tastes and used to classify red wines. The array comprises sensing units made from Langmuir-Blodgett (LB) films of conducting polymers and lipids and layer-by-layer (LBL) films from chitosan deposited onto gold interdigitated electrodes. Using impedance spectroscopy as the principle of detection, we show that distinct clusters can be identified in principal component analysis (PCA) plots for six types of red wine. Distinction can be made with regard to vintage, vineyard and brands of the red wine. Furthermore, if the data are treated with artificial neural networks (ANNs), this artificial tongue can identify wine samples stored under different conditions. This is illustrated by considering 900 wine samples, obtained with 30 measurements for each of the five bottles of the six wines, which could be recognised with 100% accuracy using the algorithms Standard Backpropagation and Backpropagation momentum in the ANNs. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Essential oils were obtained from roots of 10 Aristolochia species by hydrodistillation and analysed by GC MS. A total of 75 compounds were identified in the analysed oils. Multivariate analyses of the chemical constituents of the roots enabled classification of the species into four morphological groups. These forms of analysis represent an aid in identification of further specimens belonging to these species. (C) 2007 Elsevier Ltd. All rights reserved.