992 resultados para comparative genomic


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The advent and application of high-resolution array-based comparative genome hybridization (array CGH) has led to the detection of large numbers of copy number variants (CNVs) in patients with developmental delay and/or multiple congenital anomalies as well as in healthy individuals. The notion that CNVs are also abundantly present in the normal population challenges the interpretation of the clinical significance of detected CNVs in patients. In this review we will illustrate a general clinical workflow based on our own experience that can be used in routine diagnostics for the interpretation of CNVs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Splenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8 Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrated transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P<0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL. These observations provide valuable guidance for further characterisation of 7q deletion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Staphylococcus aureus, especially when it is methicillin resistant, has been recognised as a major cause of nosocomial and community-acquired infections. It has also been shown that certain strains were able to cause clonal epidemics whereas others showed a more incidental occurrence. On the basis of this behavioural distinction, a genetic feature underlying this difference in epidemicity can be assumed. Understanding the difference will not only contribute to the development of markers for the identification of epidemic strains but will also shed light on the evolution of clones. Genomes of strains from two independent collections (n=18 and n=10 strains) were analysed. Both collections were composed of carefully selected, genetically diverse strains with clinically well-defined epidemic and sporadic behaviour. Comparative genome hybridisation (CGH) was performed using an Agilent array for one collection (up to 11 probes per open reading frame - ORF), and an Affymetrix array for the other (up to 30 probes per ORF). Presence and absence information of probe homologues and ORFs was taken for analysis of molecular variance (AMOVA) at the strain and behaviour levels. Not a single probe showed 100% concordant differences between epidemic and sporadic strains. Moreover, probe differences between groups were always smaller than those within groups. This was also true, when the analysis was focussed on presence versus absence of ORF's or when probe information was transformed into allelic profiles. These findings present strong evidence against the presence or absence of a single common specific genetic factor differentiating epidemic from sporadic S. aureus clones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and aim of the study: Genomic gains and losses play a crucial role in the development and progression of DLBCL and are closely related to gene expression profiles (GEP), including the germinal center B-cell like (GCB) and activated B-cell like (ABC) cell of origin (COO) molecular signatures. To identify new oncogenes or tumor suppressor genes (TSG) involved in DLBCL pathogenesis and to determine their prognostic values, an integrated analysis of high-resolution gene expression and copy number profiling was performed. Patients and methods: Two hundred and eight adult patients with de novo CD20+ DLBCL enrolled in the prospective multicentric randomized LNH-03 GELA trials (LNH03-1B, -2B, -3B, 39B, -5B, -6B, -7B) with available frozen tumour samples, centralized reviewing and adequate DNA/RNA quality were selected. 116 patients were treated by Rituximab(R)-CHOP/R-miniCHOP and 92 patients were treated by the high dose (R)-ACVBP regimen dedicated to patients younger than 60 years (y) in frontline. Tumour samples were simultaneously analysed by high resolution comparative genomic hybridization (CGH, Agilent, 144K) and gene expression arrays (Affymetrix, U133+2). Minimal common regions (MCR), as defined by segments that affect the same chromosomal region in different cases, were delineated. Gene expression and MCR data sets were merged using Gene expression and dosage integrator algorithm (GEDI, Lenz et al. PNAS 2008) to identify new potential driver genes. Results: A total of 1363 recurrent (defined by a penetrance > 5%) MCRs within the DLBCL data set, ranging in size from 386 bp, affecting a single gene, to more than 24 Mb were identified by CGH. Of these MCRs, 756 (55%) showed a significant association with gene expression: 396 (59%) gains, 354 (52%) single-copy deletions, and 6 (67%) homozygous deletions. By this integrated approach, in addition to previously reported genes (CDKN2A/2B, PTEN, DLEU2, TNFAIP3, B2M, CD58, TNFRSF14, FOXP1, REL...), several genes targeted by gene copy abnormalities with a dosage effect and potential physiopathological impact were identified, including genes with TSG activity involved in cell cycle (HACE1, CDKN2C) immune response (CD68, CD177, CD70, TNFSF9, IRAK2), DNA integrity (XRCC2, BRCA1, NCOR1, NF1, FHIT) or oncogenic functions (CD79b, PTPRT, MALT1, AUTS2, MCL1, PTTG1...) with distinct distribution according to COO signature. The CDKN2A/2B tumor suppressor locus (9p21) was deleted homozygously in 27% of cases and hemizygously in 9% of cases. Biallelic loss was observed in 49% of ABC DLBCL and in 10% of GCB DLBCL. This deletion was strongly correlated to age and associated to a limited number of additional genetic abnormalities including trisomy 3, 18 and short gains/losses of Chr. 1, 2, 19 regions (FDR < 0.01), allowing to identify genes that may have synergistic effects with CDKN2A/2B inactivation. With a median follow-up of 42.9 months, only CDKN2A/2B biallelic deletion strongly correlates (FDR p.value < 0.01) to a poor outcome in the entire cohort (4y PFS = 44% [32-61] respectively vs. 74% [66-82] for patients in germline configuration; 4y OS = 53% [39-72] vs 83% [76-90]). In a Cox proportional hazard prediction of the PFS, CDKN2A/2B deletion remains predictive (HR = 1.9 [1.1-3.2], p = 0.02) when combined with IPI (HR = 2.4 [1.4-4.1], p = 0.001) and GCB status (HR = 1.3 [0.8-2.3], p = 0.31). This difference remains predictive in the subgroup of patients treated by R-CHOP (4y PFS = 43% [29-63] vs. 66% [55-78], p=0.02), in patients treated by R-ACVBP (4y PFS = 49% [28-84] vs. 83% [74-92], p=0.003), and in GCB (4y PFS = 50% [27-93] vs. 81% [73-90], p=0.02), or ABC/unclassified (5y PFS = 42% [28-61] vs. 67% [55-82] p = 0.009) molecular subtypes (Figure 1). Conclusion: We report for the first time an integrated genetic analysis of a large cohort of DLBCL patients included in a prospective multicentric clinical trial program allowing identifying new potential driver genes with pathogenic impact. However CDKN2A/2B deletion constitutes the strongest and unique prognostic factor of chemoresistance to R-CHOP, regardless the COO signature, which is not overcome by a more intensified immunochemotherapy. Patients displaying this frequent genomic abnormality warrant new and dedicated therapeutic approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chemoreception is a biological process essential for the survival of animals, as it allows the recognition of important volatile cues for the detection of food, egg-laying substrates, mates or predators, among other purposes. Furthermore, its role in pheromone detection may contribute to evolutionary processes such as reproductive isolation and speciation. This key role in several vital biological processes makes chemoreception a particularly interesting system for studying the role of natural selection in molecular adaptation. Two major gene families are involved in the perireceptor events of the chemosensory system: the odorant-binding protein (OBP) and chemosensory protein (CSP) families. Here, we have conducted an exhaustive comparative genomic analysis of these gene families in twenty Arthropoda species. We show that the evolution of the OBP and CSP gene families is highly dynamic, with a high number of gains and losses of genes, pseudogenes and independent origins of subfamilies. Taken together, our data clearly support the birth-and-death model for the evolution of these gene families with an overall high gene-turnover rate. Moreover, we show that the genome organization of the two families is significantly more clustered than expected by chance and, more important, that this pattern appears to be actively maintained across the Drosophila phylogeny. Finally, we suggest the homologous nature of the OBP and CSP gene families, dating back their MRCA (most recent common ancestor) to 380¿420 Mya, and we propose a scenario for the origin and diversification of these families.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Résumé : Le glioblastome (GBM, WHO grade IV) est la tumeur cérébrale primaire la plus fréquente et la plus maligne, son pronostic reste très réservé et sa réponse aux différents traitements limitée. Récemment, une étude clinique randomisée (EORTC 26981/NCIC CE.3) a démontré que le traitement combiné de temozolomide et radiothérapie (RT/TMZ) est le meilleur dans les cas de GBM nouvellement diagnostiqués [1]. Cependant, seul un sous-groupe de patients bénéficie du traitement RT/TMZ et même parmi eux, leur survie reste très limitée. Pour tenter de mieux comprendre les réponses au traitement RT/TMZ, la biologie du GBM, identifier d'autres facteurs de résistance et découvrir de nouvelles cibles aux traitements, nous avons conduit une analyse moléculaire étendue à 73 patients inclus dans cette étude clinique. Nous avons complété les résultats moléculaires déjà obtenus par un profil génomique du nombre de copies par Array Comparative Genomic Hybridization. Afin d'atteindre nos objectifs, nous avons analysé en parallèle les données cliniques des patients et leurs profils moléculaires. Nos résultats confirment des analyses connues dans le domaine des aberrations du nombre de copies (CNA) et de profils du glioblastome. Nous avons observé une bonne corrélation entre le CNA génomique et l'expression de l'ARN messager dans le glioblastome et identifié un nouveau modèle de CNA du chromosome 7 pouvant présenter un intérêt clinique. Nous avons aussi observé par l'analyse du CNA que moins de 10% des glioblastomes conservent leurs mécanismes de suppression de tumeurs p53 et Rb1. Nous avons aussi observé que l'amplification du CDK4 peut constituer un facteur supplémentaire de résistance au traitement RT/TMZ, cette observation nécessite confirmation sur un plus grand nombre d'analyses. Nous avons montré que dans notre analyse des profils moléculaires et cliniques, il n'est pas possible de différencier le GBM à composante oligodendrogliale (GBM-O) du glioblastome. En superposant les profils moléculaires et les modèles expérimentaux in vitro, nous avons identifié WIF-1 comme un gène suppresseur de tumeur probable et une activation du signal WNT dans la pathologie du glioblastome. Ces observations pourraient servir à une meilleure compréhension de cette maladie dans le futur. Abstract : Glioblastoma, (GBM, WHO grade IV) is the most malignant and most frequent primary brain tumor with a very poor prognosis and response to therapy. A recent randomized clinical trial (EORTC26981/NCIC CE.3) established RT/TMZ as the 1St effective chemo-radiation therapy in newly diagnosed GBM [1]. However only a genetic subgroup of patients benefit from RT/TMZ and even in this subgroup overall survival remains very dismal. To explain the observed response to RT/TMZ, have a better understanding of GBM biology, identify other resistance factors and discover new drugable targets a comprehensive molecular analysis was performed in 73 of these GBM trial cohort. We complemented the available molecular data with a genomic copy number profiling by Array Comparative Genomic Hybridization. We proceeded to align the molecular profiles and the Clinical data, to meet our project objectives. Our data confirm known GBM Copy Number Aberrations and profiles. We observed a good correlation of genomic CN and mRNA expression in GBM, and identified new interesting CNA pattern for chromosome 7 with a potential clinical value. We also observed that by copy number aberration data alone, less than 10% of GBM have an intact p53 and Rb1 tumor .suppressor pathways. We equally observed that CDK4 amplification might constitute an additional RT/TMZ resistant factor, an observation that will need confirmation in a larger data set. We show that the molecular and clinical profiles in our data set, does not support the identification of GBM-O as a new entity in GBM. By combining the molecular profiles and in vitro model experiments we identify WIF1 as a potential GBM TSG and an activated WNT signaling as a pathologic event in GBM worth incorporation in attempts to better understand and impact outcome in this disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability of Mycobacterium tuberculosis to establish a latent infection (LTBI) in humans confounds the treatment of tuberculosis. Consequently, there is a need to discover new therapeutic agents that can kill M. tuberculosis both during active disease and LTBI. The streptomycin-dependent strain of M. tuberculosis, 18b, provides a useful tool for this purpose since upon removal of streptomycin (STR) it enters a non-replicating state that mimics latency both in vitro and in animal models. The 4.41 Mb genome sequence of M. tuberculosis 18b was determined and this revealed the strain to belong to clade 3 of the ancient ancestral lineage of the Beijing family. STR-dependence was attributable to insertion of a single cytosine in the 530 loop of the 16S rRNA and to a single amino acid insertion in the N-terminal domain of initiation factor 3. RNA-seq was used to understand the genetic programme activated upon STR-withdrawal and hence to gain insight into LTBI. This revealed reconfiguration of gene expression and metabolic pathways showing strong similarities between non-replicating 18b and M. tuberculosis residing within macrophages, and with the core stationary phase and microaerophilic responses. The findings of this investigation confirm the validity of 18b as a model for LTBI, and provide insight into both the evolution of tubercle bacilli and the functioning of the ribosome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Microarray based comparative genomic hybridisation (CGH) experiments have been used to study numerous biological problems including understanding genome plasticity in pathogenic bacteria. Typically such experiments produce large data sets that are difficult for biologists to handle. Although there are some programmes available for interpretation of bacterial transcriptomics data and CGH microarray data for looking at genetic stability in oncogenes, there are none specifically to understand the mosaic nature of bacterial genomes. Consequently a bottle neck still persists in accurate processing and mathematical analysis of these data. To address this shortfall we have produced a simple and robust CGH microarray data analysis process that may be automated in the future to understand bacterial genomic diversity. Results: The process involves five steps: cleaning, normalisation, estimating gene presence and absence or divergence, validation, and analysis of data from test against three reference strains simultaneously. Each stage of the process is described and we have compared a number of methods available for characterising bacterial genomic diversity, for calculating the cut-off between gene presence and absence or divergence, and shown that a simple dynamic approach using a kernel density estimator performed better than both established, as well as a more sophisticated mixture modelling technique. We have also shown that current methods commonly used for CGH microarray analysis in tumour and cancer cell lines are not appropriate for analysing our data. Conclusion: After carrying out the analysis and validation for three sequenced Escherichia coli strains, CGH microarray data from 19 E. coli O157 pathogenic test strains were used to demonstrate the benefits of applying this simple and robust process to CGH microarray studies using bacterial genomes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Root nodule symbiosis (RNS) is one of the most efficient biological systems for nitrogen fixation and it occurs in 90% of genera in the Papilionoideae, the largest subfamily of legumes. Most papilionoid species show evidence of a polyploidy event occurred approximately 58 million years ago. Although polyploidy is considered to be an important evolutionary force in plants, the role of this papilionoid polyploidy event, especially its association with RNS, is not understood. In this study, we explored this role using an integrated comparative genomic approach and conducted gene expression comparisons and gene ontology enrichment analyses. The results show the following: (1) approximately a quarter of the papilionoid-polyploidy-derived duplicate genes are retained; (2) there is a striking divergence in the level of expression of gene duplicate pairs derived from the polyploidy event; and (3) the retained duplicates are frequently involved in the processes crucial for RNS establishment, such as symbiotic signalling, nodule organogenesis, rhizobial infection and nutrient exchange and transport. Thus, we conclude that the papilionoid polyploidy event might have further refined RNS and induced a more robust and enhanced symbiotic system. This conclusion partly explains the widespread occurrence of the Papilionoideae.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Aplasia of the mullerian ducts leads to absence of the uterine corpus, uterine cervix, and upper (superior) vagina. Patients with mullerian aplasia (MA) often exhibit additional clinical features such as renal, vertebral and cardiac defects. A number of different syndromes have been associated with MA, and in most cases its aetiology remains poorly understood. Objective and methods: 14 syndromic patients with MA and 46, XX G-banded karyotype were screened for DNA copy number changes by similar to 1 Mb whole genome bacterial artificial chromosome (BAC) array based comparative genomic hybridisation (CGH). The detected alterations were validated by an independent method and further mapped by high resolution oligo-arrays. Results: Submicroscopic genomic imbalances affecting the 1q21.1, 17q12, 22q11.21, and Xq21.31 chromosome regions were detected in four probands. Presence of the alterations in the normal mother of one patient suggests incomplete penetrance and/or variable expressivity. Conclusion: 4 of the 14 patients (29%) were found to have cryptic genomic alterations. The imbalances on 22q11.21 support recent findings by us and others that alterations in this chromosome region may result in impairment of mullerian duct development. The remaining imbalances indicate involvement of previously unknown chromosome regions in MA, and point specifically to LHX1 and KLHL4 as candidate genes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Xylella fastidiosa 9a5c (XF-9a5c) and Xanthomonas axonopodis pv. citri (XAC) are bacteria that infect citrus plants. Sequencing of the genomes of these strains is complete and comparative analyses are now under way with the genomes of other bacteria of the same genera. In this review, we present an overview of this comparative genomic work. We also present a detailed genomic comparison between XF-9a5a and XAC. Based on this analysis, genes and operons were identified that might be relevant for adaptation to citrus. XAC has two copies of a type II secretion system, a large number of cell wall-degrading enzymes and sugar transporters, a complete energy metabolism, a whole set of avirulence genes associated with a type III secretion system, and a complete flagellar and chemotatic system. By contrast, XF-9a5c possesses more genes involved with type IV pili biosynthesis than does XAC, contains genes encoding for production of colicins, and has 4 copies of Type I restriction/modification system while XAC has only one.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phenotypically discordant monozygotic twins offer the possibility of gene discovery through delineation of molecular abnormalities in one member of the twin pair. One proposed mechanism of discordance is postzygotically occurring genomic alterations resulting from mitotic recombination and other somatic changes. Detection of altered genomic fragments can reveal candidate gene loci that can be verified through additional analyses. We investigated this hypothesis using array comparative genomic hybridization; the 50K and 250K Affymetrix GeneChip (R) SNP arrays and an Illumina custom array consisting of 1,536 SNPs, to scan for genomic alterations in a sample of monozygotic twin pairs with discordant cleft lip and/or palate phenotypes. Paired analysis for deletions, amplifications and loss of heterozygosity, along with sequence verification of SNPs with discordant genotype calls did not reveal any genomic discordance between twin pairs in lymphocyte DNA samples. Our results demonstrate that postzygotic genomic alterations are not a common cause of monozygotic twin discordance for isolated cleft lip and/or palate. However, rare or balanced genomic alterations, tissue-specific events and small aberrations beyond the detection level of our experimental approach cannot be ruled out. The stability of genomes we observed in our study samples also suggests that detection of discordant events in other monozygotic twin pairs would be remarkable and of potential disease significance.