935 resultados para compact objects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compact steep-spectrum sources (CSSs) are an interesting class of objects which are of subgalactic dimensions; they occur more frequently in high-frequency surveys because their spectra often turn over at lower frequencies. We have estimated the symmetry parameters of a well-defined sample of CSSs and compared these with the larger 3CR sources of similar luminosity to understand the evolution and the consistency of CSSs with the unified scheme. We suggest that the majority of CSSs are likely to be young sources advancing outward through an asymmetric, inhomogeneous environment to form the larger ones. The radio properties of the CSSs are consistent with the unified scheme, where the axes of the quasars are seen closer to the line of sight while the radio galaxies lie closer to the plane of the sky. We discuss how radio polarization observations may be used to probe whether the physical conditions in the central regions of the CSSs are different from the larger ones. We present a simple scenario where the depolarization and high rotation measures seen in many CSSs can be consistent with the low rotation measures of cores in the more extended quasars and suggest further observations to test this scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent all-object spectroscopic survey centred on the Fornax cluster of galaxies has discovered a population of subluminous and extremely compact members, called 'ultra-compact dwarf' (UCD) galaxies. In order to clarify the origin of these objects, we have used self-consistent numerical simulations to study the dynamical evolution a nucleated dwarf galaxy would undergo if orbiting the centre of the Fornax cluster and suffering from its strong tidal gravitational field. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e. g. size and mass) similar to those observed for UCDs. We also find that although this formation process does not have a strong dependence on the initial total luminosity of the nucleated dwarf, it does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter haloes with central 'cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller star clusters. We provide some theoretical predictions on the total number and radial number density profile of UCDs in a cluster and their dependencies on cluster masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dedicated to the memory of our colleague Vasil Popov January 14, 1942 – May 31, 1990 * Partially supported by ISF-Center of Excellence, and by The Hermann Minkowski Center for Geometry at Tel Aviv University, Israel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A spatial object consists of data assigned to points in a space. Spatial objects, such as memory states and three dimensional graphical scenes, are diverse and ubiquitous in computing. We develop a general theory of spatial objects by modelling abstract data types of spatial objects as topological algebras of functions. One useful algebra is that of continuous functions, with operations derived from operations on space and data, and equipped with the compact-open topology. Terms are used as abstract syntax for defining spatial objects and conditional equational specifications are used for reasoning. We pose a completeness problem: Given a selection of operations on spatial objects, do the terms approximate all the spatial objects to arbitrary accuracy? We give some general methods for solving the problem and consider their application to spatial objects with real number attributes. © 2011 British Computer Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents an analysis of the largest catalog to date of infrared spectra of massive young stellar objects in the Large Magellanic Cloud. Evidenced by their very different spectral features, the luminous objects span a range of evolutionary states from those most embedded in their natal molecular material to those that have dissipated and ionized their surroundings to form compact HII regions and photodissociation regions. We quantify the contributions of the various spectral features using the statistical method of principal component analysis. Using this analysis, we classify the YSO spectra into several distinct groups based upon their dominant spectral features: silicate absorption (S Group), silicate absorption and fine-structure line emission (SE), polycyclic aromatic hydrocarbon (PAH) emission (P Group), PAH and fine-structure line emission (PE), and only fine-structure line emission (E). Based upon the relative numbers of sources in each category, we are able to estimate the amount of time massive YSOs spend in each evolutionary stage. We find that approximately 50% of the sources have ionic fine-structure lines, indicating that a compact HII region forms about half-way through the YSO lifetime probed in our study. Of the 277 YSOs we collected spectra for, 41 have ice absorption features, indicating they are surrounded by cold ice-bearing dust particles. We have decomposed the shape of the ice features to probe the composition and thermal history of the ice. We find that most the CO2 ice is embedded a polar ice matrix that has been thermally processed by the embedded YSO. The amount of thermal processing may be correlated with the luminosity of the YSO. Using the Australia Telescope Compact Array, we imaged the dense gas around a subsample of our sources in the HII complexes N44, N105, N113, and N159 using HCO+ and HCN as dense gas tracers. We find that the molecular material in star forming environments is highly clumpy, with clumps that range from subparsec to ~2 parsecs in size and with masses between 10^2 to 10^4 solar masses. We find that there are varying levels of star formation in the clumps, with the lower-mass clumps tending to be without massive YSOs. These YSO-less clumps could either represent an earlier stage of clump to the more massive YSO-bearing ones or clumps that will never form a massive star. Clumps with massive YSOs at their centers have masses larger than those with massive YSOs at their edges, and we suggest that the difference is evolutionary: edge YSO clumps are more advanced than those with YSOs at their centers. Clumps with YSOs at their edges may have had a significant fraction of their mass disrupted or destroyed by the forming massive star. We find that the strength of the silicate absorption seen in YSO IR spectra feature is well-correlated with the on-source HCO+ and HCN flux densities, such that the strength of the feature is indicative of the embeddedness of the YSO. We estimate that ~40% of the entire spectral sample has strong silicate absorption features, implying that the YSOs are embedded in circumstellar material for about 40% of the time probed in our study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and approximate to 0.8 '' angular resolution images in the J, H, and K(S)-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 +/- 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser proper motion observations (6-8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc approximate to 1.5 x 10(50) s(-1)) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10(50) s(-1)) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS 2. The K(S)-band images resolve the infrared source IRS 2 indicating that it is a very young compact H II region. Sources IRS 2E was resolved into compact cluster (within 660 AU of projected distance) of three objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of three objects (maybe four in the case of W51d1) each one. Although IRS 2E is the brightest source in the K-band and at 12.6 mu m, it is not clearly associated with a radio continuum source. Our spectrum of IRS 2E shows, similar to previous work, strong emission in Br gamma and He I, as well as three forbidden emission lines of Fe III and emission lines of molecular hydrogen (H(2)) marking it as a massive young stellar object.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present K-band spectra of the near infrared counterparts to IRS 2E and IRS 2W which is associated with the ultracompact H II region W51d, both of them embedded sources in the Galactic compact H II region W51 IRS 2. The high spatial resolution observations were obtained with the laser guide star facility and Near-infrared Integral Field Spectrograph (NIFS) mounted at the Gemini-North observatory. The spectrum of the ionizing source of W51d shows the photospheric features N III ( 21155 angstrom) in emission and He II ( 21897 angstrom) in absorption which lead us to classify it as a young O3 type star. We detected CO overtone in emission at 23000 angstrom in the spectrum of IRS 2E, suggesting that it is a massive young object still surrounded by an accretion disk, probably transitioning from the hot core phase to an ultracompact H II region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use multiwavelength data (H I, FUV, NUV, R) to search for evidence of star formation in the intragroup medium of the Hickson Compact Group 100. We find that young star-forming regions are located in the intergalactic H I clouds of the compact group which extend to over 130 kpc away from the main galaxies. A tidal dwarf galaxy (TDG) candidate is located in the densest region of the H I tail, 61 kpc from the brightest group member and its age is estimated to be only 3.3 Myr. Fifteen other intragroup H II regions and TDG candidates are detected in the Galaxy Evolution Explorer (GALEX) FUV image and within a field 10' x 10' encompassing the H I tail. They have ages <200 Myr, H I masses of 10(9.2-10.4) M(circle dot), 0.001

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results from the PARallaxes of Southern Extremely Cool objects ( PARSEC) program, an observational program begun in 2007 April to determine parallaxes for 122 L and 28 T southern hemisphere dwarfs using the Wide Field Imager on the ESO 2.2 m telescope. The results presented here include parallaxes of 10 targets from observations over 18 months and a first version proper motion catalog. The proper motions were obtained by combining PARSEC observations astrometrically reduced with respect to the Second US Naval Observatory CCD Astrograph Catalog, and the Two Micron All Sky Survey Point Source Catalog. The resulting median proper motion precision is 5 mas yr(-1) for 195,700 sources. The 140 0.3 deg(2) fields sample the southern hemisphere in an unbiased fashion with the exception of the galactic plane due to the small number of targets in that region. The proper motion distributions are shown to be statistically well behaved. External comparisons are also fully consistent. We will continue to update this catalog until the end of the program, and we plan to improve it including also observations from the GSC2.3 database. We present preliminary parallaxes with a 4.2 mas median precision for 10 brown dwarfs, two of which are within 10 pc. These increase the present number of L dwarfs by 20% with published parallaxes. Of the 10 targets, seven have been previously discussed in the literature: two were thought to be binary, but the PARSEC observations show them to be single; one has been confirmed as a binary companion and another has been found to be part of a binary system, both of which will make good benchmark systems. These results confirm that the foreseen precision of PARSEC can be achieved and that the large field of view will allow us to identify wide binary systems. Observations for the PARSEC program will end in early 2011 providing three to four years of coverage for all targets. The main expected outputs are: more than a 100% increase in the number of L dwarfs with parallaxes, increment in the number of objects per spectral subclass up to L9-in conjunction with published results-to at least 10, and to put sensible limits on the general binary fraction of brown dwarfs. We aim to contribute significantly to the understanding of the faint end of the H-R diagram and of the L/T transition region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Dwarf irregular galaxies are relatively simple unevolved objects where it is easy to test models of galactic chemical evolution. Aims. We attempt to determine the star formation and gas accretion history of IC 10, a local dwarf irregular for which abundance, gas, and mass determinations are available. Methods. We apply detailed chemical evolution models to predict the evolution of several chemical elements (He, O, N, S) and compared our predictions with the observational data. We consider additional constraints such as the present-time gas fraction, the star formation rate (SFR), and the total estimated mass of IC 10. We assume a dark matter halo for this galaxy and study the development of a galactic wind. We consider different star formation regimes: bursting and continuous. We explore different wind situations: i) normal wind, where all the gas is lost at the same rate and ii) metal-enhanced wind, where metals produced by supernovae are preferentially lost. We study a case without wind. We vary the star formation efficiency (SFE), the wind efficiency, and the time scale of the gas infall, which are the most important parameters in our models. Results. We find that only models with metal-enhanced galactic winds can reproduce the properties of IC 10. The star formation must have proceeded in bursts rather than continuously and the bursts must have been less numerous than similar to 10 over the whole galactic lifetime. Finally, IC 10 must have formed by a slow process of gas accretion with a timescale of the order of 8 Gyr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exact composition of a specific class of compact stars, historically referred to as ""neutron stars,'' is still quite unknown. Possibilities ranging from hadronic to quark degrees of freedom, including self-bound versions of the latter, have been proposed. We specifically address the suitability of strange star models (including pairing interactions) in this work, in the light of new measurements available for four compact stars. The analysis shows that these data might be explained by such an exotic equation of state, actually selecting a small window in parameter space, but still new precise measurements and also further theoretical developments are needed to settle the subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the mass distribution for a sample of 18 late-type galaxies in nine Hickson compact groups. We used Ha rotation curves (RCs) from high-resolution two-dimensional velocity fields of Fabry-Perot observations and the J-band photometry from the Two Micron All Sky Survey, in order to determine the dark halo and the visible matter distributions. The study compares two halo density profiles, an isothermal core-like distribution, and a cuspy one. We also compare their visible and dark matter distributions with those of galaxies belonging to cluster and field galaxies coming from two samples: 40 cluster galaxies of Barnes et al. and 35 field galaxies of Spano et al. The central halo surface density is found to be constant with respect to the total absolute magnitude similar to what is found for the isolated galaxies. This suggests that the halo density is independent of galaxy type and environment. We have found that core-like density profiles better fit the RCs than cuspy-like ones. No major differences have been found between field, cluster, and compact group galaxies with respect to their dark halo density profiles.