134 resultados para collocation
Resumo:
The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.
Resumo:
We present a new algorithm for continuation of limit cycles of autonomous systems as a system parameter is varied. The algorithm works in phase space with an ordered set of points on the limit cycle, along with spline interpolation. Currently popular algorithms in bifurcation analysis packages compute time-domain approximations of limit cycles using either shooting or collocation. The present approach seems useful for continuation near saddle homoclinic points, where it encounters a corner while time-domain methods essentially encounter a discontinuity (a relatively short period of rapid variation). Other phase space-based algorithms use rescaled arclength in place of time, but subsequently resemble the time-domain methods. Compared to these, we introduce additional freedom through a variable stretching of arclength based on local curvature, through the use of an auxiliary index-based variable. Several numerical examples are presented. Comparisons with results from the popular package, MATCONT, are favorable close to saddle homoclinic points.
Resumo:
The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of the patches is related to the reduction they cause in the stress intensity factor (SIF) of the crack. So, for reliable design, one needs an accurate evaluation of the SIF in terms of the crack, patch and adhesive parameters. In this investigation, a centrally cracked large plate with a pair of symmetric bonded narrow patches, oriented normally to the crack line, is analysed by a continuum approach. The narrow patches are treated as transversely flexible line members. The formulation leads to an integral equation which is solved numerically using point collocation. The convergence is rapid. It is found that substantial reductions in SIF are possible with practicable patch dimensions and locations. The patch is more effective when placed on the crack than ahead of the crack. The present analysis indicates that a little distance inwards of the crack tip, not the crack tip itself, is the ideal location, for the patch.
Resumo:
An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.
Resumo:
A method involving eigenfunction expansion and collocation is employed to solve the axisymmetric problem of a slowly and steadily rotating circular disc in a fluid of finite extent whose surface is covered with a surfactant film. The present method (originally described by Wang (Acta Mech. 94, 97, 1992)) is observed to produce results of practical importance associated with the problem more quickly and more easily than the one used earlier by Shail and Gooden (Int. J. Multiphase Flow 7, 245, 1992). (C) 1994 Academic Press, Inc.
Resumo:
In this paper, we show the limitations of the traditional charge linearization techniques for modeling terminal charges of the independent double-gate metal-oxide-semiconductor field-effect transistors. Based on our recent computationally efficient Poisson solution for independent double gate transistors, we propose a new charge linearization technique to model the terminal charges and transcapacitances. We report two different types of quasistatic large-signal models for the long-channel device. In the first type, the terminal charges are expressed as closed-form functions of the source- and drain-end inversion charge densities and found to be accurate when the potential distribution at source end of the channel is hyperbolic in nature. The second type, which is found to be accurate in all regimes of operations, is based on the quadratic spline collocation technique and requires the input voltage equation to be solved two more times, apart from the source and drain ends.
Resumo:
We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 1024(3) collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number Pr-M over a large range, namely 0.01 <= Pr-M <= 10. We obtain data for a wide variety of statistical measures, such as probability distribution functions (PDFs) of the moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterize intermittency, isosurfaces of quantities, such as the moduli of the vorticity and current density, and joint PDFs, such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from a larger intermittency in the magnetic field than in the velocity field, at large Pr-M, to a smaller intermittency in the magnetic field than in the velocity field, at low Pr-M. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of Pr-M, multiscaling exponent ratios agree, at least within our error bars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.
Resumo:
The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical solution in frequency domain is done by discretisation in space by approximating the unknown function using spectral functions like Chebyshev polynomials, Legendre polynomials and also Normal polynomials. Different numerical methods such as Galerkin Method, Petrov- Galerkin method, Method of moments and Collocation method or the Pseudo-spectral method in frequency domain are studied and compared with the available exact solution. An approximate solution is also obtained for the Timoshenko beam with varying cross-section using Laplace Spectral Element Method (LSEM). The group speeds are computed exactly for the Cantilever beam and Timoshenko beam with uniform cross-section and is compared with the group speeds obtained numerically. The shear mode and the bending modes of the Timoshenko beam with uniform cross-section are separated numerically by applying a modulated pulse as the shear force and the corresponding group speeds for varying taper parameter in are obtained numerically by varying the frequency of the input pulse. An approximate expression for calculating group speeds corresponding to the shear mode and the bending mode, and also the cut-off frequency is obtained. Finally, we show that the cut-off frequency disappears for large in, for epsilon > 0 and increases for large in, for epsilon < 0.
Resumo:
In this paper, linear stability analysis on a Newtonian fluid film flowing under the effect of gravity over an inclined porous medium saturated with the same fluid in isothermal condition is carried out. The focus is placed on the effect of the anisotropic and inhomogeneous variations in the permeability of the porous medium on the shear mode and surface mode instabilities. The fluid-porous system is modelled by a coupled two-dimensional Navier-Stokes/Darcy problem. The perturbation equations are solved numerically using the Chebyshev collocation method. Detailed stability characteristics as a function of the depth ratio (the ratio of the depth of the fluid layer to that of the porous layer), the anisotropic parameter (the ratio of the permeability in the direction of the basic flow to that in the direction transverse to the basic flow) and the inhomogeneity functions are presented.
Resumo:
In this paper, attempt is made to solve a few problems using the Polynomial Point Collocation Method (PPCM), the Radial Point Collocation Method (RPCM), Smoothed Particle Hydrodynamics (SPH), and the Finite Point Method (FPM). A few observations on the accuracy of these methods are recorded. All the simulations in this paper are three dimensional linear elastostatic simulations, without accounting for body forces.
Resumo:
Two series of periodically clickable polyesters were prepared; one of them carries alkylene segments along its backbone, whereas the other carries poly(ethylene glycol) (PEG) segments. These polyesters were clicked with either MPEG-350 azide or docosyl (C22) azide to yield periodically grafted amphiphilic copolymers (PGACs) carrying either flexible hydrophilic or crystallizable hydrophobic backbone segments. The immiscibility between hydrocarbon and PEG segments causes both of these systems to fold in either a zigzag or hairpin-like conformation; the hairpin-like conformation appears to be preferred when flexible PEG segments are present in the backbone. The folded chains further reorganize in the solid state to develop a lamellar morphology that permits the collocation of the PEG and hydrocarbon (HC) segments within alternate domains; evidence for the self-segregation was gained from DSC, SAXS, and AFM studies. SAXS studies revealed the formation of an extended lamellar structure, whereas AFM images showed uniform layered morphology with layer heights that matched reasonably well with the interlamellar spacing obtained from the SAXS study. Labeling One representative PGAC, carrying crystallizable long alkylene segments in the backbone and pendant PEG-350 side chains, with a small mole fraction of pyrene fluorophore permitted the examination of the conformational transition that occurs upon going from a good to a poor solvent; this single-chain folded conformation, we postulate, is the intermediate that organizes into the lamellar morphology.
Resumo:
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.
Resumo:
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is developed in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.
Resumo:
A general method is presented for solving the plane elasticity problem of finite plates with multiple microcracks. The method directly accounts for the interactions between different microcracks and the effect of outer boundary of a finite plate. Analysis is based on a superposition scheme and series expansions of the complex potentials. By using the traction-free conditions on each crack surface and resultant forces relations along outer boundary, a set of governing equations is formulated. The governing equations are solved numerically on the basis of a boundary collocation procedure. The effective Young's moduli for randomly oriented cracks and parallel cracks are evaluated for rectangular plates with microcracks. The numerical results are compared with those from various micromechanics models and experimental data. These results show that the present method provides a direct and efficient approach to deal with finite solids containing multiple microcracks.
Resumo:
In this paper, the problem of a crack perpendicular to and terminating at an interface in bimaterial structure with finite boundaries is investigated. The dislocation simulation method and boundary collocation approach are used to derive and solve the basic equations. Two kinds of loading form are considered when the crack lies in a softer or a stiffer material, one is an ideal loading and the other one fits to the practical experiment loading. Complete solutions of the stress field including the T stress are obtained as well as the stress intensity factors. Influences of T stress on the stress field ahead of the crack tip are studied. Finite boundary effects on the stress intensity factors are emphasized. Comparisons with the problem presented by Chen et al. (Int. J. Solids and Structure, 2003, 40, 2731-2755) are discussed also.