997 resultados para collision time


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a three-layered framework to monitor the positioning performance requirements of Real-time Relative Positioning (RRP) systems of the Cooperative Intelligent Transport Systems (C-ITS) that support Cooperative Collision Warning (CCW) applications. These applications exploit state data of surrounding vehicles obtained solely from the Global Positioning System (GPS) and Dedicated Short-Range Communications (DSRC) units without using other sensors. To this end, the paper argues the need for the GPS/DSRC-based RRP systems to have an autonomous monitoring mechanism, since the operation of CCW applications is meant to augment safety on roads. The advantages of autonomous integrity monitoring are essential and integral to any safety-of-life system. The autonomous integrity monitoring framework proposed necessitates the RRP systems to detect/predict the unavailability of their sub-systems and of the integrity monitoring module itself, and, if available, to account for effects of data link delays and breakages of DSRC links, as well as of faulty measurement sources of GPS and/or integrated augmentation positioning systems, before the information used for safety warnings/alarms becomes unavailable, unreliable, inaccurate or misleading. Hence, a monitoring framework using a tight integration and correlation approach is proposed for instantaneous reliability assessment of the RRP systems. Ultimately, using the proposed framework, the RRP systems will provide timely alerts to users when the RRP solutions cannot be trusted or used for the intended operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews a variety of advanced signal processing algorithms that have been developed at the University of Southampton as part of the Prometheus (Programme for European traffic flow with highest efficiency and unprecedented safety) programme to achieve an intelligent driver warning system (IDWS). The IDWS includes the detection of road edges, lanes, obstacles and their tracking and identification, estimates of time to collision, and behavioural modelling of drivers for a variety of scenarios. The underlying algorithms are briefly discussed in support of the IDWS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years a significant amount of research has been undertaken in collision avoidance and personnel location technology in order to reduce the number of incidents involving pedestrians and mobile plant equipment which are a high risk in underground coal mines. Improving the visibility of pedestrians to drivers would potentially reduce the likelihood of these incidents. In the road safety context, a variety of approaches have been used to make pedestrians more conspicuous to drivers at night (including vehicle and roadway lighting technologies and night vision enhancement systems). However, emerging research from our group and others has demonstrated that clothing incorporating retroreflective markers on the movable joints as well as the torso can provide highly significant improvements in pedestrian visibility in reduced illumination. Importantly, retroreflective markers are most effective when positioned on the moveable joints creating a sensation of “biological motion”. Based only on the motion of points on the moveable joints of an otherwise invisible body, observers can quickly recognize a walking human form, and even correctly judge characteristics such as gender and weight. An important and as yet unexplored question is whether the benefits of these retroreflective clothing configurations translate to the context of mining where workers are operating under low light conditions. Given that the benefits of biomotion clothing are effective for both young and older drivers, as well as those with various eye conditions common in those >50 years reinforces their potential application in the mining industry which employs many workers in this age bracket. This paper will summarise the visibility benefits of retroreflective markers in a biomotion configuration for the mining industry, highlighting that this form of clothing has the potential to be an affordable and convenient way to provide a sizeable safety benefit. It does not involve modifications to vehicles, drivers, or infrastructure. Instead, adding biomotion markings to standard retroreflective vests can enhance the night-time conspicuity of mining workers by capitalising on perceptual capabilities that have already been well documented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-access techniques are widely used in computer networking and distributed multiprocessor systems. On-the-fly arbitration schemes permit one of the many contenders to access the medium without collisions. Serial arbitration is cost effective but is slow and hence unsuitable for high-speed multiprocessor environments supporting very high data transfer rates. A fully parallel arbitration scheme takes less time but is not practically realisable for large numbers of contenders. In this paper, a generalised parallel-serial scheme is proposed which significantly reduces the arbitration time and is practically realisable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human sport doping control analysis is a complex and challenging task for anti-doping laboratories. The List of Prohibited Substances and Methods, updated annually by World Anti-Doping Agency (WADA), consists of hundreds of chemically and pharmacologically different low and high molecular weight compounds. This poses a considerable challenge for laboratories to analyze for them all in a limited amount of time from a limited sample aliquot. The continuous expansion of the Prohibited List obliges laboratories to keep their analytical methods updated and to research new available methodologies. In this thesis, an accurate mass-based analysis employing liquid chromatography - time-of-flight mass spectrometry (LC-TOFMS) was developed and validated to improve the power of doping control analysis. New analytical methods were developed utilizing the high mass accuracy and high information content obtained by TOFMS to generate comprehensive and generic screening procedures. The suitability of LC-TOFMS for comprehensive screening was demonstrated for the first time in the field with mass accuracies better than 1 mDa. Further attention was given to generic sample preparation, an essential part of screening analysis, to rationalize the whole work flow and minimize the need for several separate sample preparation methods. Utilizing both positive and negative ionization allowed the detection of almost 200 prohibited substances. Automatic data processing produced a Microsoft Excel based report highlighting the entries fulfilling the criteria of the reverse data base search (retention time (RT), mass accuracy, isotope match). The quantitative performance of LC-TOFMS was demonstrated with morphine, codeine and their intact glucuronide conjugates. After a straightforward sample preparation the compounds were analyzed directly without the need for hydrolysis, solvent transfer, evaporation or reconstitution. The hydrophilic interaction technique (HILIC) provided good chromatographic separation, which was critical for the morphine glucuronide isomers. A wide linear range (50-5000 ng/ml) with good precision (RSD<10%) and accuracy (±10%) was obtained, showing comparable or better performance to other methods used. In-source collision-induced dissociation (ISCID) allowed confirmation analysis with three diagnostic ions with a median mass accuracy of 1.08 mDa and repeatable ion ratios fulfilling WADA s identification criteria. The suitability of LC-TOFMS for screening of high molecular weight doping agents was demonstrated with plasma volume expanders (PVE), namely dextran and hydroxyethylstarch (HES). Specificity of the assay was improved, since interfering matrix compounds were removed by size exclusion chromatography (SEC). ISCID produced three characteristic ions with an excellent mean mass accuracy of 0.82 mDa at physiological concentration levels. In summary, by combining TOFMS with a proper sample preparation and chromatographic separation, the technique can be utilized extensively in doping control laboratories for comprehensive screening of chemically different low and high molecular weight compounds, for quantification of threshold substances and even for confirmation. LC-TOFMS rationalized the work flow in doping control laboratories by simplifying the screening scheme, expediting reporting and minimizing the analysis costs. Therefore LC-TOFMS can be exploited widely in doping control, and the need for several separate analysis techniques is reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of multiple unmanned aerial vehicle (UAV) rendezvous when the UAVs have to perform maneuvers to avoid collisions with other UAVs. The proposed solution consists of using velocity control and a wandering maneuver, if needed, of the UAVs based on a consensus among them on the estimated time of arrival at the point of the rendezvous. This algorithm, with a slight modification is shown to be useful in tracking stationary or slowly moving targets with a standoff distance. The proposed algorithm is simple and computationally efficient. The simulation results demonstrate the efficacy of the proposed approach. DOI: 10.1061/(ASCE)AS.1943-5525.0000145. (C) 2012 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Towards ultrafast optoelectronic applications of single and a few layer reduced graphene oxide (RGO), we study time domain terahertz spectroscopy and optical pump induced changes in terahertz conductivity of self-supported RGO membrane in the spectral window of 0.5-3.5 THz. The real and imaginary parts of conductivity spectra clearly reveal low frequency resonances, attributed to the energy gaps due to the van Hove singularities in the density of states flanking the Dirac points arising due to the relative rotation of the graphene layers. Further, optical pump induced terahertz conductivity is positive, pointing to the dominance of intraband scattering processes. The relaxation dynamics of the photo-excited carriers consists of three cooling pathways: the faster (similar to 450 fs) one due to optical phonon emission followed by disorder mediated large momentum and large energy acoustic phonon emission with a time constant of a few ps (called the super-collision mechanism) and a very large time (similar to 100 ps) arising from the deep trap states. The frequency dependence of the dynamic conductivity at different delay times is analyzed in term of Drude-Smith model. (C) 2014 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, sliding mode control-based impact time guidance laws are proposed. Even for large heading angle errors and negative initial closing speeds, the desired impact time is achieved by enforcing a sliding mode on a switching surface designed by using the concepts of collision course and estimated time-to-go. Unlike existing guidance laws, the proposed guidance strategy achieves impact time successfully even when the estimated interception time is greater than the desired impact time. Simulation results are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IEEE Computer Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important concept proposed in the early stage of robot path planning field is the shrinking of the robot to a point and meanwhile expanding of the obstacles in the workspace as a set of new obstacles. The resulting grown obstacles are called the Configuration Space (Cspace) obstacles. The find-path problem is then transformed into that of finding a collision free path for a point robot among the Cspace obstacles. However, the research experiences obtained so far have shown that the calculation of the Cspace obstacles is very hard work when the following situations occur: 1. both the robot and obstacles are not polygons and 2. the robot is allowed to rotate. This situation is even worse when the robot and obstacles are three dimensional (3D) objects with various shapes. Obviously a direct path planning approach without the calculation of the Cspace obstacles is strongly needed. This paper presents such a new real-time robot path planning approach which, to the best of our knowledge, is the first one in the robotic community. The fundamental ideas are the utilization of inequality and optimization technique. Simulation results have been presented to show its merits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we describe an apparatus in our laboratory for investigating elementary chemical reactions using the high resolution time-of-flight Rydberg tagging method. In this apparatus, we have adopted a rotating source design so that collision energy can be changed for crossed beam studies of chemical reactions. Preliminary results on the HI photodissociation and the F atom reaction with H-2 are reported here. These results suggest that the experimental apparatus is potentially a powerful tool for investigating state-to-state dynamics of elementary chemical reactions. (c) 2005 American Institute of Physics.