956 resultados para collector moment
Resumo:
Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).
Resumo:
Although the notion of wellbeing is popular in contemporary literature, it is variously interpreted and has no common definition. Such inconsistencies in definition have particular relevance when considering wellbeing programs designed for children. By developing a broader conceptualisation of wellbeing and its key elements, the range of programs and services developed in the name of wellbeing will achieve a more consistent cross-disciplinary focus to ensure that the needs of the individual, including children, can more accurately be addressed. This paper presents a new perspective on conceptualising wellbeing. The authors argue that conceptualising wellbeing as an accrued process has particular relevance for both adults and children. A definition for accrued wellbeing is presented in an attempt to address some of the current deficiencies in existing understandings of an already complicated construct. The potential for the ideas presented when considering wellbeing as a process of accrual may have further application when considered beyond childhood.
Resumo:
The magnetic moment of the Λ hyperon is calculated using the QCD sum-rule approach of Ioffe and Smilga. It is shown that μΛ has the structure μΛ=(2/3(eu+ed+4es)(eħ/2MΛc)(1+δΛ), where δΛ is small. In deriving the sum rules special attention is paid to the strange-quark mass-dependent terms and to several additional terms not considered in earlier works. These terms are now appropriately incorporated. The sum rule is analyzed using the ratio method. Using the external-field-induced susceptibilities determined earlier, we find that the calculated value of μΛ is in agreement with experiment.
Resumo:
Over the last two decades, there has been an increasing awareness of, and interest in, the use of spatial moment techniques to provide insight into a range of biological and ecological processes. Models that incorporate spatial moments can be viewed as extensions of mean-field models. These mean-field models often consist of systems of classical ordinary differential equations and partial differential equations, whose derivation, at some point, hinges on the simplifying assumption that individuals in the underlying stochastic process encounter each other at a rate that is proportional to the average abundance of individuals. This assumption has several implications, the most striking of which is that mean-field models essentially neglect any impact of the spatial structure of individuals in the system. Moment dynamics models extend traditional mean-field descriptions by accounting for the dynamics of pairs, triples and higher n-tuples of individuals. This means that moment dynamics models can, to some extent, account for how the spatial structure affects the dynamics of the system in question.
Resumo:
Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.
Resumo:
This paper describes an approach based on Zernike moments and Delaunay triangulation for localization of hand-written text in machine printed text documents. The Zernike moments of the image are first evaluated and we classify the text as hand-written using the nearest neighbor classifier. These features are independent of size, slant, orientation, translation and other variations in handwritten text. We then use Delaunay triangulation to reclassify the misclassified text regions. When imposing Delaunay triangulation on the centroid points of the connected components, we extract features based on the triangles and reclassify the text. We remove the noise components in the document as part of the preprocessing step so this method works well on noisy documents. The success rate of the method is found to be 86%. Also for specific hand-written elements such as signatures or similar text the accuracy is found to be even higher at 93%.
Resumo:
It is shown that there is a strict one-to-one correspondence between results obtained by the use of "restricted" variational principles and those obtained by a moment method of the Mott-Smith type for shock structure.
Resumo:
The formal charge distribution and hence the electric moments of a number of halosilanes and their methyl derivatives have been calculated by the method of Image and Image . The difference between the observed and the calculated values in simple halosilanes is attributed to a change in the hybridization of the terminal halogen atom and in methyl halosilanes to the enhanced electron release of the methyl group towards silicon compared with carbon.
Resumo:
We develop an alternate characterization of the statistical distribution of the inter-cell interference power observed in the uplink of CDMA systems. We show that the lognormal distribution better matches the cumulative distribution and complementary cumulative distribution functions of the uplink interference than the conventionally assumed Gaussian distribution and variants based on it. This is in spite of the fact that many users together contribute to uplink interference, with the number of users and their locations both being random. Our observations hold even in the presence of power control and cell selection, which have hitherto been used to justify the Gaussian distribution approximation. The parameters of the lognormal are obtained by matching moments, for which detailed analytical expressions that incorporate wireless propagation, cellular layout, power control, and cell selection parameters are developed. The moment-matched lognormal model, while not perfect, is an order of magnitude better in modeling the interference power distribution.
Resumo:
Modifications made in a solar air collector inlet duct to achieve uniform velocity of air in the absorber duct are described. Measurements of temperature and pressure at various points in the duct gave information on the distribution of air in the absorber duct. A thermal performance test conducted on the collector with a vaned diffuser showed some significant improvement compared with a diffuser without vanes.
Resumo:
Probabilistic analysis of cracking moment from 22 simply supported reinforced concrete beams is performed. When the basic variables follow the distribution considered in this study, the cracking moment of a beam is found to follow a normal distribution. An expression is derived, for characteristic cracking moment, which will be useful in examining reinforced concrete beams for a limit state of cracking.
Therapeutic work with the present moment: A conversation analytical study of guidance into immediacy
Resumo:
Therapeutic work with the client’s present moment experience in existential therapy was studied by means of conversation analysis. Using publicly available video recordings of therapy sessions as data, an existential therapist’s practice of guiding a client into immediacy, or refocusing the talk on a client’s immediate experience, was described and compared with a therapist’s corresponding action in cognitive therapy. The study contributes to the description of interactional practice of existential therapy, and involves the first application of conversation analysis to a comparative study of psychotherapy process. The potential utility of this approach and the clinical and empirical implications of the present findings are discussed.
Resumo:
The problem of estimating the three-dimensional rotational parameters of a rigid body from its monocular image data has been considered using the method of moment invariants. Second- and third-order moment invariants are used to construct the feature vector for the scale and orientation independent identification of the camera view axis direction in the body-fixed reference frame. The camera rotation angle about the view axis is derived from second-order central moments. The relative attitude of the rigid body is then expressed in terms of quaternion parameters to model the outputs of a video sensor in attitude control simulations. Experimental results and simulation outputs are presented using the mathematical model of a spacecraft.
Resumo:
Two distinct ferromagnetic phases are present in LaMn0.5Co0.5O3 for which the spin-only magnetic moment calculated from the high temperature dc susceptibility is found to be unusually high. Such a high moment can only be accounted for by assigning the valence state of the cations to Mn2+-Co4+. This is unrealistic as the earlier report based on X-ray absorption spectroscopy (XAS) has suggested the valence state to be mainly Mn4+-Co2+ with traces of Co3+. Also from our studies using XAS, it is found that the valence state is mainly Mn4+-Co2+. In addition, no notable difference is observed in the minor Co3+ present in both phases. Our results based on X-ray magnetic circular dichroism studies (XMCD) reveal the presence of ``distinct'' high orbital moment associated with Co2+ for both phases. Thus it is found that the distinctness of the orbital moment also plays a vital role in determining the magnetic moment and T-c of both phases of LaMn0.5Co0.5O3. By considering the orbital moment obtained from XMCD, the anomaly in the paramagnetic susceptibility is resolved and thus we are able to assign the valence state to Mn4+-Co2+ configuration. The difference in the magnitude of orbital moment in both phases is believed to be due to the crystal field effects.