875 resultados para cohesive strength


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses both experimental and numerical analyses regarding the tensile behaviour of CFRP single-strap repairs. Two fundamental geometrical parameters were studied: overlap length and patch thickness. The numerical model used ABAQUS® software and a developed cohesive mixed-mode damage model adequate for ductile adhesives, and implemented within interface finite elements. Stress analyses and strength predictions were carried out. Experimental and numerical comparisons were performed on failure modes, failure load and equivalent stiffness of the repair. Good correlation was found between experimental and numerical results, showing that the proposed model can be successfully applied to bonded joints or repairs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es desenvolupa una eina de disseny per l'anàlisi de la tolerància al dany en composites. L'eina pot predir el inici i la propagació de fisures interlaminars. També pot ser utilitzada per avaluar i planificar la necessitat de reparar o reemplaçar components durant la seva vida útil. El model desenvolupat pot ser utilitzat tan per simular càrregues estàtiques com de fatiga. El model proposat és un model de dany termodinàmicament consistent que permet simular la delaminació en composites sota càrregues variables. El model es formula dins el context de la Mecànica del Dany, fent ús dels models de zona cohesiva. Es presenta un metodologia per determinar els paràmetres del model constitutiu que permet utilitzar malles d'elements finits més bastes de les que es poden usar típicament. Finalment, el model és també capaç de simular la delaminació produïda per càrregues de fatiga.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the study was to evaluate the bond strength of fibre glass and carbon fibre posts in the root canal walls cemented with self-adhesive (RelyX-Unicem) and chemical (Cement-Post) resin cements. Forty maxillary canines were divided into four groups according to the cement and post used and submitted to the push-out test (0.5 mm min(-1)). The data were submitted to statistical analysis (2-way ANOVA, Bonferroni - P < 0.05) and fracture analysis by Scanning Electronic Microscopy. Fibre glass presented the best results when cemented with RelyX-Unicem and Cement-Post (P < 0.05). RelyX-Unicem presented the highest bond strength values for both posts (P < 0.05). Fracture analysis showed predominance of cohesive fracture of post for RelyX-Unicem and adhesive fracture between dentin/cement and mixed for Cement-Post. The bond strength values were significantly affected by the type of post and cement used and the highest values were found for fibre glass posts and RelyX-Unicem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of the study was to assess the in vitro bond strength (BS) of glass fiber posts (GF) and carbon fiber posts (CF) in the cervical, middle, and apical thirds of root canals cemented with RelyX-Unicem (RX) and Cement-Post (CP). Materials and Methods: Forty maxillary canines were divided into 4 groups (n = 10) according to the cement and post used: group 1: GF and RX; group 2: CF and RX; group 3: GF and CP; group 4: CF and CP. The push-out test was applied in the cervical, middle and apical thirds of each specimen to assess bond strength of the cement/post complex to the root canal wall. The data obtained were submitted to ANOVA (Bonferroni test, p < 0.05), and fracture analysis was done with SEM. Results: The GF posts presented the best results when cemented with RX and with CF (p < 0.05). RX presented the highest BS values for both GF and CF (p < 0.05). For all the groups, BS was higher in the cervical third, followed by the middle and apical thirds. Fracture analysis showed a predominance of cohesive fracture of posts for RX, and a predominance of adhesive fracture between dentin/cement, and mixed failure mode for CP. Conclusion: GF posts cemented with RX presented the highest BS values in all root thirds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. Materials and Methods: One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm(2)). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 Subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey`s test and Dunnett`s test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). Results: No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). Conclusion: The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of the problem: The performance of self-etch systems on enamel is controversial and seems to be dependent on the application technique and the enamel preparation. Purpose of the Study: To examine the effects of conditioning time and enamel surface preparation on bond strength and etching pattern of adhesive systems to enamel. Materials and Methods: Ninety-six teeth were divided into 16 conditions (N = 6) in function of enamel preparation and conditioning time for bond strength test. The adhesive systems OptiBond FL (Kerr, Orange, CA, USA), OptiBond SOLO Plus (Kerr), Clearfil SE Bond (Kuraray, Osaka, Japan), and Adper Prompt L-Pop (3M ESPE, St. Paul, MN, USA) were applied on unground or ground enamel following the manufacturers` directions or doubling the conditioning time. Cylinders of Filtek Flow (0.5-mm height) were applied to each bonded enamel surface using a Tygon tube (0.7 mm in diameter; Saint-Gobain Corp., Aurora, OH, USA). After storage (24 h/37 degrees C), the specimens were subjected to shear force (0.5 mm/min). The data were treated by a three-way analysis of variance and Tukey`s test (alpha = 0.05). The failure modes of the debonded interfaces and the etching pattern of adhesives were observed using scanning electron microscopy. Results: Only the main factor ""adhesive"" was statistically significant (p < 0.001). The lowest bond strength value was observed for OptiBond FL. The most defined etching pattern was observed for 35% phosphoric acid and for Adper Prompt L-Pop. Mixed failures were observed for all adhesives, but OptiBond FL showed cohesive failures in resin predominantly. Conclusions: The increase in the conditioning time as well as the enamel pretreatment did not provide an increase in the resin-enamel bond strength values for the studied adhesives. CLINICAL SIGNIFICANCE The surface enamel preparation and the conditioning time do not affect the performance of self-etch systems to enamel. (J Esthet Restor Dent 20:322-336, 2008)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. This study was undertaken to evaluate the shear bond strength of four materials used as aesthetic material bonded to Ni-Cr alloy.Methods. Sixty-eight alloy discs were prepared and divided equally into four groups, and received four treatments for veneering: conventional feldspathic porcelain (Noritake EX-3) and three light-cured prosthodontic composite resins (Artglass, Solidex and Targis). The aesthetic materials were applied after metal structure conditioning in accordance with the manufacturers' recommendations. The specimens were stored in distilled water at 37 degreesC for 7 days. A universal testing machine was used to measure the shear bond strength of the specimens at a cross head speed of 0.5 mm/min. Fractured specimens were examined by using both optical and scanning electron microscope.Results. The analysis of variance and Tukey's test showed that the strongest mean shear bond was obtained with Noritake EX-3 (mean shear bond strength 42.90 +/- 7.82 MPa). For composites, the highest mean shear bond strength was observed for Targis (12.30 +/- 1.57 MPa); followed by Solidex (11.94 +/- 1.04 MPa) and Artglass (10.04 +/- 0.75 MPa). Optical analysis of the fractured surf aces indicated that for Targis and Noritake EX-3 all failures were a mixture of both cohesive and adhesive patterns. As for Artglass and Solidex, the fractures were mainly adhesive in nature.Conclusions. The Solidex system was equivalent to the Targis system in bond strength and exhibited greater strength than the Artglass system. The porcelain fused-to-metal showed considerably higher shear bond strength than the three metal-resin bonding techniques. (C) 2003 Elsevier B.V. Ltd. Ali rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. When clinical fractures of the ceramic veneer on metal-ceramic prostheses can be repaired, the need for remake may be eliminated or postponed. Many different ceramic repair materials are available, and bond strength data are necessary for predicting the success of a given repair system.Purpose. This study evaluated the shear bond strength of different repair systems for metal-ceramic restorations applied on metal and porcelain.Material and methods. Fifty cylindrical specimens (9 X 3 mm) were fabricated in a nickel-chromium alloy (Vera Bond 11) and 50 in feldspathic porcelain (Noritakc). Metal (M) and porcelain (P) specimens were embedded in a polyvinyl chloride (PVC) ring and received I of the following bonding and resin composite repair systems (n=10): Clearfil SE Bond/Clearfil AP-X (CL), Bistite II DC/Palfique (BT), Cojet Sand/Z100 (Q), Scotchbond Multipurpose Plus/Z100 (SB) (control group), or Cojet Sand plus Scotchbond Multipurpose Plus/Z100 (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (1000 cycles at 5 degrees C to 55 degrees C), and stored at 37 degrees C for 8 days. Shear bond tests between the metal or ceramic specimens and repair systems were performed in a mechanical testing machine with a crosshead speed of 0.5 mm/min. Mean shear bond strength values (MPa) were submitted to 1-way ANOVA and Tukey honestly significant difference tests (alpha=.05). Each specimen was examined under a stereoscopic lens with X 30 magnification, and mode of failure was classified as adhesive, cohesive, or a combination.Results. on metal, the mean shear bond strength values for the groups were as follows: MCL, 18.40 +/- 2.88(b); MBT, 8.57 +/- 1.00(d); MCJ, 25.24 +/- 3.46(a); MSB, 16.26 +/- 3.09(bc); and MCJSB, 13.11 +/- 1.24(c). on porcelain, the mean shear bond strength values ofeach group were as follows: PCL, 16.91 +/- 2.22(b); PBT, 18.04 +/- 3.2(ab); PCJ, 19.54 +/- 3.77(ab); PSB, 21.05 +/- 3.22(a); and PCJSB, 16.18 +/- 1.71(b). Within each substrate, identical superscript letters denote no significant differences among groups.Conclusions. The bond strength for the metal substrate was significantly higher using the Q system. For porcelain, SB, Q, and BT systems showed the highest shear bond strength values, and only SB was significantly different compared to CL and CJSB (P <.05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. Objective: This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Material and Methods: Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37 degrees C for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37 degrees C for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (alpha=0.05) and the failure modes were visually classified. Results: No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Conclusions: Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents.