897 resultados para coaxial cavity resonators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially resolved cathodoluminescence (CL) study of a ZnO nanonail, having thin shank, tapered neck, and hexagonal head sections, is reported. Monochromatic imaging and line scan profiling indicate that the wave guiding and leaking from growth imperfections in addition to the oxygen deficiency variation determine the spatial contrast of CL emissions. Occurrence of resonance peaks at identical wavelengths regardless of CL-excitation spots is inconsistent with the whispering-gallery mode (WGM) resonances of a two-dimensional cavity in the finite difference time domain simulation. However, three dimensioanl cavity simulation produced WGM peaks that are consistent with the experimental spectra, including transverse-electric resonances that are comparable to transverse-magnetic ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hexagonal resonator characteristics of an individual ZnO-nanonail’s head were investigated via spatially resolved cathodoluminescence (CL) at room temperature. The positions of most of distinct CL peaks in visible range were well matched to those of whispering gallery modes (WGMs) of a hexagonal dielectric cavity when we took birefringence and dispersion of refractive indices into account. The broad and weak peaks for TE polarization in long wavelength range were consistent with refractive-index values below the threshold for total internal inflection. CL peaks that were not matched to WGMs were identified as either triangular quasi-WGM or Fabry–Pérot resonance modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - Thermo-magnetic convection and heat transfer of paramagnetic fluid placed in a micro-gravity condition (g = 0) and under a uniform vertical gradient magnetic field in an open square cavity with three cold sidewalls have been studied numerically. Design/methodology/approach - This magnetic force is proportional to the magnetic susceptibility and the gradient of the square of the magnetic induction. The magnetic susceptibility is inversely proportional to the absolute temperature based on Curie’s law. Thermal convection of a paramagnetic fluid can therefore take place even in zero-gravity environment as a direct consequence of temperature differences occurring within the fluid due to a constant internal heat generation placed within a magnetic field gradient. Findings - Effects of magnetic Rayleigh number, Ra, Prandtl number, Pr, and paramagnetic fluid parameter, m, on the flow pattern and isotherms as well as on the heat absorption are presented graphically. It is found that the heat transfer rate is suppressed in increased of the magnetic Rayleigh number and the paramagnetic fluid parameter for the present investigation. Originality/value - It is possible to control the buoyancy force by using the super conducting magnet. To the best knowledge of the author no literature related to magnetic convection for this configuration is available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations for mixed convection of micropolar fluid in an open ended arc-shape cavity have been carried out in this study. Computation is performed using the Alternate Direct Implicit (ADI) method together with the Successive Over Relaxation (SOR) technique for the solution of governing partial differential equations. The flow phenomenon is examined for a range of values of Rayleigh number, 102 ≤ Ra ≤ 106, Prandtl number, 7 ≤ Pr ≤ 50, and Reynolds number, 10 ≤ Re ≤ 100. The study is mainly focused on how the micropolar fluid parameters affect the fluid properties in the flow domain. It was found that despite the reduction of flow in the core region, the heat transfer rate increases, whereas the skin friction and microrotation decrease with the increase in the vortex viscosity parameter, Δ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the effect of nano particles on natural convection of water based nanofluids contained in an open rectangular cavity is carried out numerically. The flow pattern and heat transfer characteristics are studied for different values of volume fraction in the range 0   0.2 , Rayleigh number in the range 9 1 Ra 10 and the nano particles with different thermo physical properties. It was found that for low Rayleigh numbers, heat transfer exhibits a decreasing trend for increasing values of volume fraction of oxide nanofluids, whereas for higher values of Rayleigh numbers, an increasing trend of heat transfer was observed due to increase in the volume fraction of nanofluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of radiation on natural convection of Newtonian fluid contained in an open cavity is investigated in this study. The governing partial differential equations are solved numerically using the Alternate Direct Implicit method together with the Successive Over Relaxation method. The study is focused on studying the flow pattern and the convective and radiative heat transfer rates are studied for different values of radiation parameters namely, the optical thickness of the fluid, scattering albedo, and the Planck number. It was found that in the optically thin limit, an increase in the optical thickness of the fluid raises the temperature and radiation heat transfer of the fluid. However, a further increase in the optical thickness decreases the radiative heat transfer rate due to increase in the energy level of the fluid, which ultimately reduces the total heat transfer rate within the fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion properties and topography of the fields of azimuthal surface wave (ASW) in a coaxial semiconductor structure with metal walls, placed in an external magnetic field, are investigated analytically and numerically. It is shown that an ASW phase-shifting device can be realized in the proposed structure. The conditions are indicated for which wave perturbations exist having frequencies that depend on the direction of phase change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from a steady to an unsteady flow induced by an adiabatic fin on the sidewall of a differentially heated air-filled cavity is numerically investigated. Numerical simulations have been performed over the range of Rayleigh numbers from Ra = 105–109. The temporal development and spatial structures of natural convection flows in the cavity with a fin are described. It has been demonstrated that the fin may induce the transition to an unsteady flow and the critical Rayleigh number for the occurrence of the transition is between 3.72 × 106 and 3.73 × 106. Furthermore, the peak frequencies of the oscillations triggered by different mechanisms are obtained through spectral analysis. It has been found that the flow rate through the cavity with a fin is larger than that without a fin under the unsteady flow, indicating that the fin may improve the unsteady flow in the cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double diffusive Marangoni convection flow of viscous incompressible electrically conducting fluid in a square cavity is studied in this paper by taking into consideration of the effect of applied magnetic field in arbitrary direction and the chemical reaction. The governing equations are solved numerically by using alternate direct implicit (ADI) method together with the successive over relaxation (SOR) technique. The flow pattern with the effect of governing parameters, namely the buoyancy ratio W, diffusocapillary ratio w, and the Hartmann number Ha, is investigated. It is revealed from the numerical simulations that the average Nusselt number decreases; whereas the average Sherwood number increases as the orientation of magnetic field is shifted from horizontal to vertical. Moreover, the effect of buoyancy due to species concentration on the flow is stronger than the one due to thermal buoyancy. The increase in diffusocapillary parameter, w caus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Increases in the incidence of squamous cell oropharyngeal cancer (OPC) have been reported from some countries, but have not been assessed in Australia or New Zealand. This study examines trends for squamous cell OPC and squamous cell oral cavity cancer (OCC) in two similarly sized populations, New Zealand and Queensland, Australia. Methods Incidence data for 1982–2010 were obtained from the respective population-based cancer registries for squamous cell OPC and OCC, by subsite, sex, and age. Time trends and annual percentage changes (APCs) were assessed by joinpoint regression. Results The incidence rates of squamous cell OPC in males in New Zealand since 2005 and Queensland since 2006 have increased rapidly, with APCs of 11.9% and 10.6% respectively. The trends were greatest at ages 50–69 and followed more gradual increases previously. In females, rates increased by 2.1% per year in New Zealand from 1982, but by only 0.9% (not significant) in Queensland. In contrast, incidence rates for OCC decreased by 1.2% per year in males in Queensland since 1982, but remained stable for females in Queensland and for both sexes in New Zealand. Overall, incidence rates for both OCC and OPC were substantially higher in Queensland than in New Zealand. In males in both areas, OPC incidence is now higher than that of OCC. Conclusions Incidence rates of squamous cell OPC have increased rapidly in men, while rates of OCC have been stable or reducing, showing distinct etiologies. This has both clinical and public health importance, including implications for the extension of human papilloma virus (HPV) vaccination to males.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.