878 resultados para coalbed natural gas


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An industrial scale dehydration process based on hollow fiber membranes for lowering the dew point of natural gas is described in this paper. A pilot test with the feed flux scale of 12x10(4) Nm(3)/d was carried out. Dew points of -8 degreesC-13 degreesC at a gas transport pressure in the pipeline of 4.6M Pa and methane recovery of more than 98% were attained. The water vapor content of the product gas could be maintained around 0.01 vol% during a continuous run of about 700 hours. The effects of feed flux and operation pressure on methane recovery and water vapor content were also investigated. Additionally, some auxiliary technologies, such as a full-time engine using natural gas as fuel and the utilization of vent gas in the process, are also discussed. A small amount of the vent gas from the system was used as a fuel for an engine to drive vacuum pumps, and the heat expelled from the engine was used to warm up the natural gas feed. The whole system can be operated in a self-sustainable manner from an energy point of view, and has a relatively high efficiency in the utilization of natural gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences has a long history in the R&D of catalysts and catalytic processes for petroleum and natural gas conversions in China. In this paper, results and features of some commercialized petrochemical catalysts and processes as well as newly developed processes for natural gas conversion in the pilot-plant stage are described. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cu-Zn-Al methanol catalyst combined with HZSM-5 was used for dimethyl ether (DME) synthesis from a syngas containing nitrogen, which was produced by air-partial oxidation of methane (air-POM). Air-POM occurred at 850 degreesC, 0.8 MPa, CH4/air/H2O/CO2 ratio of 1/2.4/0.8/0.4 over a Ni-based catalyst modified by magnesia and lanthanum oxide with 96% CH4 conversion and constantly gave syngas with a H-2/CO ratio of 2/1 during a period of 450 h. The obtained N-2-containing syngas was used directly for DME synthesis. About 90% CO per-pass conversion, 78% DME selectivity and 70% DME yield could be achieved during 450 h stability testing under the pressure of 5.0 MPa. the temperature of 240 degreesC and the space velocity of 1000 h(-1). (C) 2002 Elsevier Science B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Countries across the world are being challenged to decarbonise their energy systems in response to diminishing fossil fuel reserves, rising GHG emissions and the dangerous threat of climate change. There has been a renewed interest in energy efficiency, renewable energy and low carbon energy as policy‐makers seek to identify and put in place the most robust sustainable energy system that can address this challenge. This thesis seeks to improve the evidence base underpinning energy policy decisions in Ireland with a particular focus on natural gas, which in 2011 grew to have a 30% share of Ireland’s TPER. Natural gas is used in all sectors of the Irish economy and is seen by many as a transition fuel to a low-carbon energy system; it is also a uniquely excellent source of data for many aspects of energy consumption. A detailed decomposition analysis of natural gas consumption in the residential sector quantifies many of the structural drives of change, with activity (R2 = 0.97) and intensity (R2 = 0.69) being the best explainers of changing gas demand. The 2002 residential building regulations are subject to an ex-post evaluation, which using empirical data finds a 44 ±9.5% shortfall in expected energy savings as well as a 13±1.6% level of non-compliance. A detailed energy demand model of the entire Irish energy system is presented together with scenario analysis of a large number of energy efficiency policies, which show an aggregate reduction in TFC of 8.9% compared to a reference scenario. The role for natural gas as a transition fuel over a long time horizon (2005-2050) is analysed using an energy systems model and a decomposition analysis, which shows the contribution of fuel switching to natural gas to be worth 12 percentage points of an overall 80% reduction in CO2 emissions. Finally, an analysis of the potential for CCS in Ireland finds gas CCS to be more robust than coal CCS for changes in fuel prices, capital costs and emissions reduction and the cost optimal location for a gas CCS plant in Ireland is found to be in Cork with sequestration in the depleted gas field of Kinsale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(ii) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.