945 resultados para climate field reconstruction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The site Pilgrimstad in central Sweden has often been cited as a key locality for discussions of ice-free/ice-covered intervals during the Early and Middle Weichselian. Multi-proxy investigations of a recently excavated section at Pilgrimstad now provide a revised picture of the climatic and environmental development between similar to 80 and 36 ka ago. The combination of sedimentology, geochemistry, OSL and 14C dating, and macrofossil, siliceous microfossil and chironomid analyses shows: (i) a lower succession of glaciofluvial/fluvial, lacustrine and glaciolacustrine sediments; (ii) an upper lacustrine sediment sequence; and (iii) Last Glacial Maximum till cover. Microfossils in the upper lacustrine sediments are initially characteristic for oligo- to mesotrophic lakes, and macrofossils indicate arctic/sub-arctic environments and mean July temperatures > 8 degrees C. These conditions were, however, followed by a return to a low-nutrient lake and a cold and dry climate. The sequence contains several hiatuses, as shown by the often sharp contacts between individual units, which suggests that ice-free intervals alternated with possible ice advances during certain parts of the Early and Middle Weichselian.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new reconstruction of the interplanetary magnetic field (IMF, B) for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d)composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a). Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear) fit of the form B = χ · (IDV(1d) − β)α with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent studies of the variation of geomagnetic activity over the past 140 years have quantified the "coronal source" or "open" magnetic flux F-s that leaves the solar atmosphere and enters the heliosphere and have shown that it has risen, on average, by 34% since 1963 and by 140% since 1900. This variation is reflected in studies of the heliospheric field using isotopes deposited in ice sheets and meteorites by the action of galactic comic rays. The variation has also been reproduced using a model that demonstrates how the open flux accumulates and decays, depending on the rate of flux emergence in active regions and on the length of the solar cycle. The cosmic ray flux at energies > 3 GeV is found to have decayed by about 15% during the 20(th) century (and by about 4% at > 13 GeV). We show that the changes in the open flux do reflect changes in the photospheric and sub-surface field which offers an explanation of why open flux appears to be a good proxy for solar irradiance extrapolation. Correlations between F-s, solar cycle length, L, and 11-year smoothed sunspot number, R-11, explain why the various irradiance reconstructions for the last 150 years are similar in form. Possible implications of the inferred changes in cosmic ray flux and irradiance for global temperatures on Earth are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We apply the Coexistence Approach (CoA) to reconstruct mean annual precipitation (MAP), mean annual temperature (MAT), mean temperature of thewarmestmonth (MTWA) and mean temperature of the coldest month (MTCO) at 44 pollen sites on the Qinghai–Tibetan Plateau. The modern climate ranges of the taxa are obtained (1) from county-level presence/absence data and (2) from data on the optimum and range of each taxon from Lu et al. (2011). The CoA based on the optimumand range data yields better predictions of observed climate parameters at the pollen sites than that based on the county-level data. The presence of arboreal pollen, most of which is derived fromoutside the region, distorts the reconstructions. More reliable reconstructions are obtained using only the non-arboreal component of the pollen assemblages. The root mean-squared error (RMSE) of the MAP reconstructions are smaller than the RMSE of MAT, MTWA and MTCO, suggesting that precipitation gradients are the most important control of vegetation distribution on the Qinghai–Tibetan Plateau. Our results show that CoA could be used to reconstruct past climates in this region, although in areas characterized by open vegetation the most reliable estimates will be obtained by excluding possible arboreal contaminants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Observations obtained during an 8-month deployment of AMF2 in a boreal environment in Hyytiälä, Finland, and the 20-year comprehensive in-situ data from SMEAR-II station enable the characterization of biogenic aerosol, clouds and precipitation, and their interactions. During “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the ARM 2nd Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations allow the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes, in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)