932 resultados para clay-sized fractions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray diffraction analyses of the clay-sized fraction of sediments from the Nankai Trough and Shikoku Basin (Sites 1173, 1174, and 1177 of the Ocean Drilling Program) reveal spatial and temporal trends in clay minerals and diagenesis. More detrital smectite was transported into the Shikoku Basin during the early-middle Miocene than what we observe today, and smectite input decreased progressively through the late Miocene and Pliocene. Volcanic ash has been altered to dioctahedral smectite in the upper Shikoku Basin facies at Site 1173; the ash alteration front shifts upsection to the outer trench-wedge facies at Site 1174. At greater depths (lower Shikoku Basin facies), smectite alters to illite/smectite mixed-layer clay, but reaction progress is incomplete. Using ambient geothermal conditions, a kinetic model overpredicts the amount of illite in illite/smectite clays by 15%-20% at Site 1174. Numerical simulations come closer to observations if the concentration of potassium in pore water is reduced or the time of burial is shortened. Model results match X-ray diffraction results fairly well at Site 1173. The geothermal gradient at Site 1177 is substantially lower than at Sites 1173 and 1174; consequently, volcanic ash alters to smectite in lower Shikoku Basin deposits but smectite-illite diagenesis has not started. The absolute abundance of smectite in mudstones from Site 1177 is sufficient (30-60 wt%) to influence the strata's shear strength and hydrogeology as they subduct along the Ashizuri Transect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents a differentiated carbonate budget for marine surface sediments from the Mid-Atlantic Ridge of the South Atlantic, with results based on carbonate grain-size composition. Upon separation into sand, silt, and clay sub-fractions, the silt grain-size distribution was measured using a SediGraph 5100. We found regionally characteristic grain-size distributions with an overall minimum at 8 µm equivalent spherical diameter (ESD). SEM observations reveal that the coarse particles (>8 µm ESD) are attributed to planktic foraminifers and their fragments, and the fine particles (<8 µm ESD) to coccoliths. On the basis of this division, the regional variation of the contribution of foraminifers and coccoliths to the carbonate budget of the sediments are calculated. Foraminifer carbonate dominates the sediments in mesotropic regions whereas coccoliths contribute most carbonate in oligotrophic regions. The grain size of the coccolith share is constant over water depth, indicating a lower susceptibility for carbonate dissolution compared to foraminifers. Finally, the characteristic grain-size distribution in fine silt (<8 µm ESD) is set into context with the coccolith assemblage counted and biometrically measured using a SEM. The coccoliths present in the silt fraction are predominantly large species (length > 4 µm). Smaller species (length < 4 µm) belong to the clay fraction (<2 µm ESD). The average length of most frequent coccolith species is connected to prominent peaks in grain-size distributions (ESD) with a shape factor. The area below Gaussian distributions fitted to these peaks is suggested as a way to quantitatively estimate the carbonate contribution of single coccolith species more precisely compared to conventional volume estimates. The quantitative division of carbonate into the fraction produced by coccoliths and that secreted by foraminifers enables a more precise estimate for source/sink relations of consumed and released CO2 in the carbon cycle. The allocation of coccolith length and grain size (ESD) suggests size windows for the separation or accumulation of distinct coccolith species in investigations that depend on non to slightly-mixed signals (e.g., isotopic studies).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We drilled three sites (Sites 1071, 1072, and 1073) on the New Jersey shelf and slope at water depths between 88 and 664 m. Grain-size analyses from shelf sites (Sites 1071 and 1072) define five types of sediment: well-sorted fine sand, silty sand or sandy silt, clayey silt, poorly sorted sandy mud, and poorly sorted lag sediments. At slope Site 1073, a grain-size minimum of 3-6 µm is found at 300 meters below seafloor. These sediments are well sorted and lack sand- and clay-sized grains. Horizons of coarse-grained sediments are present in Unit I at Site 1073.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study of the distribution, dispersal and composition of surficial sediments in the Strait of Georgia, B.C., has resulted in the understanding of basic sedimentologic conditions within this area. The Strait of Georgia is: a long, narrow, semi-enclosed basin with a restricted circulation and a single, main, sediment source. The Fraser. River supplies practically all the sediment now being deposited in the Strait of Georgia, the bulk of it during the spring and summer freshet. This river is building a delta into the Strait from the east side near the south end. Ridges of Pleistocene deposits within the Strait and Pleistocene material around the margins, like bedrock exposures, provide local sources of sediment of only minor importance. Rivers and streams other than the Fraser contribute insignificant quantities of sediment to the Strait. Sandy sediments are concentrated in the vicinity of the delta, and in the area to the south and southeast. Mean grain size decreases from the delta toward the northwest along the axis of the Strait, and basinwards from the margins. Silts and clays are deposited in deep water west and north of the delta front, and in deep basins northwest of the delta. Poorly sorted sediments containing a gravel component are located near tidal passes, on the Vancouver Island shelf area, on ridge tops within the Strait, and with sandy sediments at the southeastern end of the study area. The Pleistocene ridges are areas of non-deposition, having at most a thin veneer of modern mud on their crests and upper flanks. The southeastern end of the study area contains a thick wedge of shandy sediment which appears to be part of an earlier delta of the Fraser River. Evidence suggests that it is now a site of active submarine erosion. Sediments throughout the Strait are compositionally extremely similar, with-Pleistocene deposits of the Fraser River drainage basin providing the principal, heterogeneous source. Gravels and coarse sands are composed primarily of lithic fragments, dominantly of dioritic to granodloritlc composition. Sand fractions exhibit increasing simplicity of mineralogy with decreasing grain-size. Quartz, felspar, amphibole and fine-grained lithic fragments are the dominant constituents of the finer sand grades. Coarse and medium silt fractions have compositions similar to the fine sands. Fine silts show an increase in abundance of phyllosilicate material, a feature even more evident in the clay-size fractions on Montmorillonite, illite, chlorite, quartz and feldspar are the main minerals in the coarse clay fraction, with minor mixed-layer clays and kaolinite. The fine clay fraction is dominated by montmorillonite, with lesser amounts of illite and chlorite. The sediments have high base-exchange capacities, related to a considerable content of montmorillonite. Magnesium is present in exchange positions in greater quantity in Georgia Strait sediments than in sediments from the Fraser River, indicating a preferential uptake of this element in the marine environment. Manganese nodules collected from two localities in the Strait imply slow sediment accumulation rates at these sites. Sedimentation rates on and close to the delta, and in the deep basins to the northwest, are high.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mixed terrigenous-pelagic sediments from the Oligocene-lower Miocene interval of Hole 1139A accumulated on the flank of an eroded alkalic volcano, Skiff Bank. In this study, I explore relationships among sediment fluxes, especially of organic carbon and the clay mineral by-products of silicate weathering, and lithologic, tectonic, climatic, and biologic forcing factors. Benthic foraminifers indicate that Skiff Bank had subsided to lower bathyal depths (1000-2000 m) by the Oligocene. Two prominent maxima in noncarbonate concentration at 28 and 22 Ma correspond to peaks in the terrigenous flux; also, high noncarbonate concentrations are associated with larger grain sizes (silt) and higher opal concentrations. These and higher-frequency variations of noncarbonate concentration were probably controlled by glacioeustatic/climatic changes, with higher noncarbonate concentrations caused by increased erosion during glacial lowstands. Around 27 Ma, benthic foraminiferal d18O values decreased 0.7 per mil as the noncarbonate concentration decreased after the 28-Ma maximum. A paucity of clay-sized sediment and clay minerals suggests that physical erosion, by waves and/or ice, predominated under weathering-limited conditions. Low organic carbon concentrations (~0.13 wt%) also suggest a harsh environment and/or poor preservation in coarse (>2 µm) sediments that were extensively bioturbated below the oxygen minimum zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leg 90 recovered approximately 3705 m of core at eight sites lying at middle bathyal depths (1000-2200 m) (Sites 587 to 594) in a traverse from subtropical to subantarctic latitudes in the southwest Pacific region, chiefly on Lord Howe Rise in the Tasman Sea. This chapter summarizes some preliminary lithostratigraphic results of the leg and includes data from Site 586, drilled during DSDP Leg 89 on the Ontong-Java Plateau that forms the northern equatorial point of the latitudinal traverse. The lithofacies consist almost exclusively of continuous sections of very pure (>95% CaCO3) pelagic calcareous sediment, typically foraminifer-bearing nannofossil ooze (or chalk) and nannofossil ooze (or chalk), which is mainly of Neogene age but extends back into the Eocene at Sites 588, 592, and 593. Only at Site 594 off southeastern New Zealand is there local development of hemipelagic sediments and several late Neogene unconformities. Increased contents of foraminifers in Leg 90 sediments, notably in the Quaternary interval, correspond to periods of enhanced winnowing by bottom currents. Significant changes in the rates of sediment accumulation and in the character and intensity of sediment bioturbation within and between sites probably reflect changes in calcareous biogenic productivity as a result of fundamental paleoceanographic events in the region during the Neogene. Burial lithification is expressed by a decrease in sediment porosity from about 70 to 45% with depth. Concomitantly, microfossil preservation slowly deteriorates as a result of selective dissolution or recrystallization of some skeletons and the progressive appearance of secondary calcite overgrowths, first about discoasters and sphenoliths, and ultimately on portions of coccoliths. The ooze/chalk transition occurs at about 270 m sub-bottom depth at each of the northern sites (Sites 586 to 592) but is delayed until about twice this depth at the two southern sites (Sites 593 and 594). A possible explanation for this difference between geographic areas is the paucity of discoasters and sphenoliths at the southern sites; these nannofossil elements provide ideal nucleation sites for calcite overgrowths. Toward the bottom of some holes, dissolution seams and flasers appear in recrystallized chalks. The very minor terrigenous fraction of the sediment consists of silt- through clay-sized quartz, feldspar, mica, and clay minerals (smectite, illite, kaolinite, and chlorite), supplied as eolian dust from the Australian continent and by wind and ocean currents from erosion on South Island, New Zealand. Changes in the mass accumulation rates of terrigenous sediment and in clay mineral assemblages through time are related to various external controls, such as the continued northward drift of the Indo-Australian Plate, the development of Antarctic ice sheets, the increased desertification of the Australian continent after 14 m.y. ago, and the progressive increase in tectonic relief of New Zealand through the late Cenozoic. Disseminated glass shards and (altered) tephra layers occur in Leg 90 cores. They were derived from major silicic eruptions in North Island, New Zealand, and from basic to intermediate explosive volcanism along the Melanesian island chains. The tephrostratigraphic record suggests episodes of increased volcanicity in the southwest Pacific centered near 17, 13, 10, 5 and 1 m.y. ago, especially in the middle and early late Miocene. In addition, submarine basaltic volcanism was widespread in the southeast Tasman Sea around the Eocene/Oligocene boundary, possibly related to the propagation of the Southeast Indian Ridge through western New Zealand as a continental rift system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The terrigenous sediment proportion of the deep sea sediments from off Northwest Africa has been studied in order to distinguish between the aeolian and the fluvial sediment supply. The present and fossil Saharan dust trajectories were recognized from the distribution patterns of the aeolian sediment. The following timeslices have been investigated: Present, 6,000, 12,000 and 18,000 y. B. P. Furthermore, the quantity of dust deposited off the Saharan coast has been estimated. For this purpose, 80 surface sediment samples and 34 sediment cores have been analysed. The stratigraphy of the cores has been achieved from oxygen isotopic curves, 14C-dating, foraminiferal transfer temperatures, and carbonate contents. Silt sized biogenic opal generally accounts for less than 2 % of the total insoluble sediment proportion. Only under productive upwelling waters and off river mouths, the opal proportion exceeds 2 % significantly. The modern terrigenous sediment from off the Saharan coast is generally characterized by intensely stained quartz grains. They indicate an origin from southern Saharan and Sahelian laterites, and a zonal aeolian transport in midtropospheric levels, between 1.5 an 5.5 km, by 'Harmattan' Winds. The dust particles follow large outbreaks of Saharan air across the African coast between 15° and 21° N. Their trajectories are centered at about 18° N and continue further into a clockwise gyre situated south of the Canary Islands. This course is indicated by a sickle-shaped tongue of coarser grain sizes in the deep-sea sediment. Such loess-sized terrigenous particles only settle within a zone extending to 700 km offshore. Fine silt and clay sized particles, with grain sizes smaller than 10- 15 µm, drift still further west and can be traced up to more than 4,000 km distance from their source areas. Additional terrigenous silt which is poor in stained quartz occurs within a narrow zone off the western Sahara between 20° and 27° N only. It depicts the present dust supply by the trade winds close to the surface. The dust load originates from the northwestern Sahara, the Atlas Mountains and coastal areas, which contain a particularly low amount of stained quartz. The distribution pattern of these pale quartz sediments reveals a SSW-dispersal of dust being consistent with the present trade wind direction from the NNE. In comparison to the sediments from off the Sahara and the deeper subtropical Atlantic, the sediments off river mouths, in particular off the Senegal river, are characterized by an additional input of fine grained terrigenous particles (< 6 µm). This is due to fluvial suspension load. The fluvial discharge leads to a relative excess of fine grained particles and is observed in a correlation diagram of the modal grain sizes of terrigenous silt with the proportion of fine fraction (< 6 µm). The aeolian sediment contribution by the Harmattan Winds strongly decreased during the Climatic Optimum at 6,000 y. B. P. The dust discharge of the trade winds is hardly detectable in the deep-sea sediments. This probably indicates a weakened atmospheric circulation. In contrast, the fluvial sediment supply reached a maximum, and can be traced to beyond Cape Blanc. Thus, the Saharan climate was more humid at 6,000 y B. P. A latitudinal shift of the Harmattan driven dust outbreaks cannot be observed. Also during the Glacial, 18,000 y. B. P., Harmattan dust transport crossed the African coast at latitudes of 15°-20° N. Its sediment load increased intensively, and markedly coarser grains spread further into the Atlantic Ocean. An expanded zone of pale-quart sediments indicates an enhanced dust supply by the trade winds blowing from the NE. No synglacial fluvial sediment contribution can be recognized between 12° and 30° N. This indicates a dry glacial climate and a strengthened stmospheric circulation over the Sahelian and Saharan region. The climatic transition pahes, at 12, 000 y. B. P., between the last Glacial and the Intergalcial, which is compareable to the Alerod in Europe, is characterized by an intermediate supply of terrigenous particles. The Harmattan dust transport wa weaker than during the Glacial. The northeasterly trade winds were still intensive. River supply reached a first postglacial maximum seaward of the Senegal river mouth. This indicates increasing humidity over the southern Sahara and a weaker atmospheric circulation as compared to the glacial. The accumulation rates of the terrigenous silt proportion (> 6 µm) decrcase exponentially with increasing distance from the Saharan coast. Those of the terrigenous fine fraction (< 6 µm) follow the same trend and show almost similar gradients. Accordingly, also the terrigenous fine fraction is believed to result predominantly from aeolian transport. In the Atlantic deep-sea sediments, the annual terrigenous sediment accumulation has fluctuated, from about 60 million tons p. a. during the Late Glacial (13,500-18,000 y. B. P, aeolian supply only) to about 33 million tons p. a. during the Holocene Climatic Optimum (6,000-9,000 y. B. P, mainly fluvial supply), when the river supply has reached a maximum, and to about 45 million tons p. a. during the last 4,000 years B. P. (fluvial supply only south of 18° N).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study was made of mineral composition of sand- and silt-sized fractions of recent clastic (riftogenic) sediments and solidified deposits collected from the bottom of the Romanche Trench during the first voyage of R/V Akademik Kurchatov. Similarity between mineral compositions of sediments and bedrocks (ultrabasites, gabbroids, diabases) was established. This similarity is a basis for considering the mineral complex of the deposits that have been derived from the bedrocks of the trench slopes, and have formed due to their submarine denudation accompanied by tectonic crushing. The same mineral composition was found in pieces of older consolidated deposits; this suggests that conditions of sedimentation similar to those at recent times have existed for a long time in the Romanche Trench.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study was performed to characterize evidence of potential unconformity-type U mineralizing fluids in drill core fractures from the Stewardson Lake prospect, in the Athabasca Basin, located in Northern Saskatchewan and Alberta, Canada. Fractures were visually classified into eight varieties. This classification scheme was improved with the use of mineralogical characterization through SEM (Scanning Electron Microscope) and XRD analyses of the fracture fills and resulted in the identification of various oxides, hydroxides, sulfides, and clays or clay-sized minerals. Fractures were tallied to a total of ten categories with some commonalities in color. The oxidative, reductive or mixed nature of the fluids interacting with each fracture was determined based on its fill mineralogy. The measured Pb isotopic signature of samples was used to distinguish fractures affected solely by fluids emanating from a U mineralization source, from those affected by mixed fluids. Anomalies in U and U-pathfinder elements detected in fractures assisted with attributing them to the secondary dispersion halo of potential mineralization. Three types of fracture functions (chimney, composite and drain) were defined based on their interpreted flow vector and history. A secondary dispersion halo boundary with a zone of dominance of infiltrating fluids was suggested for two boreholes. The control of fill mineralogy on fracture color was investigated and the indicative and non-indicative colors and minerals, with respect to a secondary dispersion halo, were formally described. The fracture colors and fills indicative of proximity to the basement host of the potential mineralization were also identified. In addition, three zones of interest were delineated in the boreholes with respect to their geochemical dynamics and their relationship to the potential mineralization: a shallow barren overburden zone, a dispersion and alteration zone at intermediate depth, and a second deeper zone of dispersion and alteration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous report, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and Nd-143/Nd-144. Montmorillonite/illite ratio (M/I ratio), total REE contents (Sigma REE), LREE/HREE ratio and cerium anomaly (delta Ce) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio > 1, delta Ce < 0.85, Sigma REE > 400 mu g/g, LREE/HREE ratio approximate to 4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio < 1, delta Ce=0.86 to 1.5, Sigma REE=200 to 350 mu g/g, LREE/HREE ratio approximate to 6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The Nd-143/Nd-144 ratios or epsilon(Nd) values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to epsilon(Nd) values. Terrigenous clay minerals of type I with the eNd values of -8 to -6 originate mainly from North American fluvial deposits. Those of type 11 with the epsilon(Nd) Values of -9 to -7 are mainly from the East Asia and North American fluvial deposits. Those of type III with epsilon(Nd) values of -6 to -3 could come from the central and eastern Pacific volcanic islands. Those of type IV with epsilon(Nd) values of -13 to -12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.