829 resultados para classification and regression trees
Resumo:
Areas of the landscape that are priorities for conservation should be those that are both vulnerable to threatening processes and that if lost or degraded, will result in conservation targets being compromised. While much attention is directed towards understanding the patterns of biodiversity, much less is given to determining the areas of the landscape most vulnerable to threats. We assessed the relative vulnerability of remaining areas of native forest to conversion to plantations in the ecologically significant temperate rainforest region of south central Chile. The area of the study region is 4.2 million ha and the extent of plantations is approximately 200000 ha. First, the spatial distribution of native forest conversion to plantations was determined. The variables related to the spatial distribution of this threatening process were identified through the development of a classification tree and the generation of a multivariate. spatially explicit, statistical model. The model of native forest conversion explained 43% of the deviance and the discrimination ability of the model was high. Predictions were made of where native forest conversion is likely to occur in the future. Due to patterns of climate, topography, soils and proximity to infrastructure and towns, remaining forest areas differ in their relative risk of being converted to plantations. Another factor that may increase the vulnerability of remaining native forest in a subset of the study region is the proposed construction of a highway. We found that 90% of the area of existing plantations within this region is within 2.5 km of roads. When the predictions of native forest conversion were recalculated accounting for the construction of this highway, it was found that: approximately 27000 ha of native forest had an increased probability of conversion. The areas of native forest identified to be vulnerable to conversion are outside of the existing reserve network. (C) 2004 Elsevier Ltd. All tights reserved.
Resumo:
Um sistema de predição de alarmes com a finalidade de auxiliar a implantação de uma política de manutenção preditiva industrial e de constituir-se em uma ferramenta gerencial de apoio à tomada de decisão é proposto neste trabalho. O sistema adquire leituras de diversos sensores instalados na planta, extrai suas características e avalia a saúde do equipamento. O diagnóstico e prognóstico implica a classificação das condições de operação da planta. Técnicas de árvores de regressão e classificação não-supervisionada são utilizadas neste artigo. Uma amostra das medições de 73 variáveis feitas por sensores instalados em uma usina hidrelétrica foi utilizada para testar e validar a proposta. As medições foram amostradas em um período de 15 meses.
Resumo:
Mestrado em Ciências Actuariais
Resumo:
Abstract Background Smear negative pulmonary tuberculosis (SNPT) accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.
Resumo:
ENGLISH: We analyzed catches per unit of effort (CPUE) from the Japanese longline fishery for bigeye tuna (Thunnus obesus) in the central and eastern Pacific Ocean (EPO) with regression tree methods. Regression trees have not previously been used to estimate time series of abundance indices fronl CPUE data. The "optimally sized" tree had 139 parameters; year, month, latitude, and longitude interacted to affect bigeye CPUE. The trend in tree-based abundance indices for the EPO was similar to trends estimated from a generalized linear model and fronl an empirical model that combines oceanographic data with information on the distribution of fish relative to environmental conditions. The regression tree was more parsimonious and would be easier to implement than the other two nl0dels, but the tree provided no information about the nlechanisms that caused bigeye CPUEs to vary in time and space. Bigeye CPUEs increased sharply during the mid-1980's and were more variable at the northern and southern edges of the fishing grounds. Both of these results can be explained by changes in actual abundance and changes in catchability. Results from a regression tree that was fitted to a subset of the data indicated that, in the EPO, bigeye are about equally catchable with regular and deep longlines. This is not consistent with observations that bigeye are more abundant at depth and indicates that classification by gear type (regular or deep longline) may not provide a good measure of capture depth. Asimulated annealing algorithm was used to summarize the tree-based results by partitioning the fishing grounds into regions where trends in bigeye CPUE were similar. Simulated annealing can be useful for designing spatial strata in future sampling programs. SPANISH: Analizamos la captura por unidad de esfuerzo (CPUE) de la pesquería palangrera japonesa de atún patudo (Thunnus obesus) en el Océano Pacifico oriental (OPO) y central con métodos de árbol de regresión. Hasta ahora no se han usado árboles de regresión para estimar series de tiempo de índices de abundancia a partir de datos de CPUE. EI árbol de "tamaño optimo" tuvo 139 parámetros; ano, mes, latitud, y longitud interactuaron para afectar la CPUE de patudo. La tendencia en los índices de abundancia basados en árboles para el OPO fue similar a las tendencias estimadas con un modelo lineal generalizado y con un modelo empírico que combina datos oceanográficos con información sobre la distribución de los peces en relación con las condiciones ambientales. EI árbol de regresión fue mas parsimonioso y seria mas fácil de utilizar que los dos otros modelos, pero no proporciono información sobre los mecanismos que causaron que las CPUE de patudo valiaran en el tiempo y en el espacio. Las CPUE de patudo aumentaron notablemente a mediados de los anos 80 y fueron mas variables en los extremos norte y sur de la zona de pesca. Estos dos resultados pueden ser explicados por cambios en la abundancia real y cambios en la capturabilidad. Los resultados de un arbal de regresión ajustado a un subconjunto de los datos indican que, en el OPO, el patudo es igualmente capturable con palangres regulares y profundos. Esto no es consistente con observaciones de que el patudo abunda mas a profundidad e indica que clasificación por tipo de arte (palangre regular 0 profundo) podría no ser una buena medida de la profundidad de captura. Se uso un algoritmo de templado simulado para resumir los resultados basados en el árbol clasificando las zonas de pesca en zonas con tendencias similares en la CPUE de patudo. El templado simulado podría ser útil para diseñar estratos espaciales en programas futuros de muestreo. (PDF contains 45 pages.)
Resumo:
Risk assessment systems for introduced species are being developed and applied globally, but methods for rigorously evaluating them are still in their infancy. We explore classification and regression tree models as an alternative to the current Australian Weed Risk Assessment system, and demonstrate how the performance of screening tests for unwanted alien species may be quantitatively compared using receiver operating characteristic (ROC) curve analysis. The optimal classification tree model for predicting weediness included just four out of a possible 44 attributes of introduced plants examined, namely: (i) intentional human dispersal of propagules; (ii) evidence of naturalization beyond native range; (iii) evidence of being a weed elsewhere; and (iv) a high level of domestication. Intentional human dispersal of propagules in combination with evidence of naturalization beyond a plants native range led to the strongest prediction of weediness. A high level of domestication in combination with no evidence of naturalization mitigated the likelihood of an introduced plant becoming a weed resulting from intentional human dispersal of propagules. Unlikely intentional human dispersal of propagules combined with no evidence of being a weed elsewhere led to the lowest predicted probability of weediness. The failure to include intrinsic plant attributes in the model suggests that either these attributes are not useful general predictors of weediness, or data and analysis were inadequate to elucidate the underlying relationship(s). This concurs with the historical pessimism that we will ever be able to accurately predict invasive plants. Given the apparent importance of propagule pressure (the number of individuals of an species released), future attempts at evaluating screening model performance for identifying unwanted plants need to account for propagule pressure when collating and/or analysing datasets. The classification tree had a cross-validated sensitivity of 93.6% and specificity of 36.7%. Based on the area under the ROC curve, the performance of the classification tree in correctly classifying plants as weeds or non-weeds was slightly inferior (Area under ROC curve = 0.83 +/- 0.021 (+/- SE)) to that of the current risk assessment system in use (Area under ROC curve = 0.89 +/- 0.018 (+/- SE)), although requires many fewer questions to be answered.
Resumo:
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.
Resumo:
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Resumo:
Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.
Resumo:
We present novel topological mappings between graphs, trees and generalized trees that means between structured objects with different properties. The two major contributions of this paper are, first, to clarify the relation between graphs, trees and generalized trees, a graph class recently introduced. Second, these transformations provide a unique opportunity to transform structured objects into a representation that might be beneficial for a processing, e.g., by machine learning techniques for graph classification. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Classification methods with embedded feature selection capability are very appealing for the analysis of complex processes since they allow the analysis of root causes even when the number of input variables is high. In this work, we investigate the performance of three techniques for classification within a Monte Carlo strategy with the aim of root cause analysis. We consider the naive bayes classifier and the logistic regression model with two different implementations for controlling model complexity, namely, a LASSO-like implementation with a L1 norm regularization and a fully Bayesian implementation of the logistic model, the so called relevance vector machine. Several challenges can arise when estimating such models mainly linked to the characteristics of the data: a large number of input variables, high correlation among subsets of variables, the situation where the number of variables is higher than the number of available data points and the case of unbalanced datasets. Using an ecological and a semiconductor manufacturing dataset, we show advantages and drawbacks of each method, highlighting the superior performance in term of classification accuracy for the relevance vector machine with respect to the other classifiers. Moreover, we show how the combination of the proposed techniques and the Monte Carlo approach can be used to get more robust insights into the problem under analysis when faced with challenging modelling conditions.
Resumo:
The mesoscale (100–102 m) of river habitats has been identified as the scale that simultaneously offers insights into ecological structure and falls within the practical bounds of river management. Mesoscale habitat (mesohabitat) classifications for relatively large rivers, however, are underdeveloped compared with those produced for smaller streams. Approaches to habitat modelling have traditionally focused on individual species or proceeded on a species-by-species basis. This is particularly problematic in larger rivers where the effects of biological interactions are more complex and intense. Community-level approaches can rapidly model many species simultaneously, thereby integrating the effects of biological interactions while providing information on the relative importance of environmental variables in structuring the community. One such community-level approach, multivariate regression trees, was applied in order to determine the relative influences of abiotic factors on fish assemblages within shoreline mesohabitats of San Pedro River, Chile, and to define reference communities prior to the planned construction of a hydroelectric power plant. Flow depth, bank materials and the availability of riparian and instream cover, including woody debris, were the main variables driving differences between the assemblages. Species strongly indicative of distinctive mesohabitat types included the endemic Galaxias platei. Among other outcomes, the results provide information on the impact of non-native salmonids on river-dwelling Galaxias platei, suggesting a degree of habitat segregation between these taxa based on flow depth. The results support the use of the mesohabitat concept in large, relatively pristine river systems, and they represent a basis for assessing the impact of any future hydroelectric power plant construction and operation. By combing community classifications with simple sets of environmental rules, the multivariate regression trees produced can be used to predict the community structure of any mesohabitat along the reach.