602 resultados para cholinergic antinociception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone remodeling is regulated by the two branches of the autonomic nervous system: the adrenergic and the cholinergic branches. Adrenergic activity favors bone loss, whereas cholinergic activity has been recently shown to favor bone mass accrual. In vitro studies have reported that cholinergic activity induces proliferation and differentiation of bone cells. In vivo studies have shown that the inhibition of cholinergic activity favors bone loss, whereas its stimulation favors bone mass accrual. Clinical studies have shown that bone density is associated with the function of many cholinergic-regulated tissues such as the hypothalamus, salivary glands, lacrimal glands and langerhans cells, suggesting a common mechanism of control. Altogether, these observations and linked findings are of great significance since they improve our understanding of bone physiology. These discoveries have been successfully used recently to investigate new promising therapies for bone diseases based on cholinergic stimulation. Here, we review the current understanding of the cholinergic activity and its association with bone health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The involvement of μ-opioid receptors in different behavioral responses elicited by nicotine was explored by using μ-opioid receptor knock-out mice. The acute antinociceptive responses induced by nicotine in the tail-immersion and hot-plate tests were reduced in the mutant mice, whereas no difference between genotypes was observed in the locomotor responses. The rewarding effects induced by nicotine were then investigated using the conditioning place-preference paradigm. Nicotine produced rewarding responses in wild-type mice but failed to produce place preference in knock-out mice, indicating the inability of this drug to induce rewarding effects in the absence of μ-opioid receptors. Finally, the somatic expression of the nicotine withdrawal syndrome, precipitated in dependent mice by the injection of mecamylamine, was evaluated. Nicotine withdrawal was significantly attenuated in knock-out mutants when compared with wild-type mice. In summary, the present results show that μ-opioid receptors are involved in the rewarding responses induced by nicotine and participate in its antinociceptive responses and the expression of nicotine physical dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial neglect is a neurological condition characterized by a breakdown of spatial cognition contralateral to hemispheric damage. Deficits in spatial attention toward the contralesional side are considered to be central to this syndrome. Brain lesions typically involve right fronto-parietal cortices mediating attentional functions and subcortical connections in underlying white matter. Convergent findings from neuroimaging and behavioral studies in both animals and humans suggest that the cholinergic system might also be critically implicated in selective attention by modulating cortical function via widespread projections from the basal forebrain. Here we asked whether deficits in spatial attention associated with neglect could partly result from a cholinergic deafferentation of cortical areas subserving attentional functions, and whether such disturbances could be alleviated by pro-cholinergic therapy. We examined the effect of a single-dose transdermal nicotine treatment on spatial neglect in 10 stroke patients in a double-blind placebo-controlled protocol, using a standardized battery of neglect tests. Nicotine-induced systematic improvement on cancellation tasks and facilitated orienting to single visual targets, but had no significant effect on other tests. These results support a global effect of nicotine on attention and arousal, but no effect on other spatial mechanisms impaired in neglect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Euglycemic hyperinsulinemia stimulates both sympathetic nerve activity and blood flow to skeletal muscle, but the mechanism is unknown. Possible mechanisms that may stimulate muscle blood flow include neural, humoral, or metabolic effects of insulin. To determine whether such insulin-induced vasodilation is modulated by stimulation of adrenergic or cholinergic mechanisms, we obtained, in eight healthy lean subjects, plethysmographic measurements of calf blood flow during 3 h of hyperinsulinemic (1 mU.kg-1.min-1) euglycemic clamp performed alone or during concomitant beta-adrenergic (propranolol infusion), cholinergic (atropine infusion), or alpha-adrenergic (prazosin administration) blockade. Euglycemic hyperinsulinemia alone increased calf blood flow by 38 +/- 10% (means +/- SE) and decreased vascular resistance by 27 +/- 4% (P < 0.01). The principal new observation is that these insulin-induced vasodilatory responses were not attenuated by concomitant propranolol or atropine infusion, nor were they potentiated by prazosin administration. In conclusion, these findings provide evidence that during euglycemic hyperinsulinemia in lean healthy humans stimulation of muscle blood flow is not mediated primarily by beta-adrenergic or cholinergic mechanisms. Furthermore, alpha-adrenergic mechanisms do not markedly limit insulin-induced stimulation of muscle blood flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related cognitive impairments were studied in rats kept in semi-enriched conditions during their whole life, and tested during ontogeny and adult life in various classical spatial tasks. In addition, the effect of intrahippocampal grafts of fetal septal-diagonal band tissue, rich in cholinergic neurons, was studied in some of these subjects. The rats received bilateral cell suspensions when aged 23-24 months. Starting 4 weeks after grafting, they were trained during 5 weeks in an 8-arm maze made of connected plexiglass tunnels. No age-related impairment was detected during the first eight trials, when the maze shape was that of a classical radial maze in which the rats had already been trained when young. The older rats were impaired when the task was made more difficult by rendering two arms parallel to each other. They developed an important neglect of one of the parallel tunnels resulting in a high amount of errors before completion of the task. In addition, the old rats developed a systematic response pattern of visits to adjacent arms in a sequence, which was not observed in the younger subjects. None of these behaviours were observed in the old rats with a septal transplant. Sixteen weeks after grafting, another experiment was conducted in a homing hole board task. Rats were allowed to escape from a large circular arena through one hole out of many, and to reach home via a flexible tube under the table. The escape hole was at a fixed position according to distant room cues, and olfactory cues were made irrelevant by rotating the table between the trials. An additional cue was placed on the escape position. No age-related difference in escape was observed during training. During a probe trial with no hole connected and no proximal cue present, the old untreated rats were less clearly focussed on the training sector than were either the younger or the grafted old subjects. Taken together, these experiments indicate that enriched housing conditions and spatial training during adult life do not protect against all age-related deterioration in spatial ability. However, it might be that the considerable improvement observed in the grafted subjects results from an interaction between the graft treatment and the housing conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of nerve growth factor (2.5S NGF) to serum-free aggregating cell cultures of fetal rat telencephalon greatly stimulated the developmental increase in choline acetyltransferase activity. Two other neuronal enzymes, acetylcholinesterase and glutamic acid decarboxylase, showed only slightly increased activities after NGF treatment whereas the total protein content of the cultures and the activity of 2',3'- cyclic nucleotide phosphodiesterase remained unchanged. The stimulation of choline acetyltransferase was dependent on the NGF media concentrations, showing a 50% maximum effect (120% increase) at approximately 3 ng/ml (10-10 M 2.5S NGF). NGF treatments during different culture periods showed that the cholinergic neurons remained responsive for at least 19 days. The continued treatment was the most effective; however, an initial treatment for only 5 days still caused a significant stimulation of choline acetyltransferase on day 19. The observed stimulation appeared to be specific to NGF. Univalent antibody fragments (Fab) against 2.5S NGF completely abolished the NGF-dependent increase in choline acetyltransferase activity, whereas Fab fragments of control IgG were ineffective. Furthermore, angiotensin II, added in high amounts to the cultures, showed no stimulatory effect. The present results suggest that certain populations of rat brain neurons are responsive to nerve growth factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown previously that the endogenous opioid system may be involved in the behavioral effects of nicotine. In the present study, the participation of endogenous enkephalins on nicotine responses has been investigated by using preproenkephalin knock-out mice. Acute nicotine-induced hypolocomotion remained unaffected in these mice. In contrast, antinociception elicited in the tail-immersion and hot-plate tests by acute nicotine administration was reduced in mutant animals. The rewarding properties of nicotine were then investigated using the place-conditioning paradigm. Nicotine induced a conditioned place preference in wild-type animals, but this effect was absent in knock-out mice. Accordingly, in vivo microdialysis studies revealed that the enhancement in dopamine extracellular levels in the nucleus accumbens induced by nicotine was also reduced in preproenkephalin-deficient mice. Finally, the somatic expression of the nicotine withdrawal syndrome precipitated in nicotine-dependent mice by mecamylamine was significantly attenuated in mutant animals. In summary, the present results indicate that endogenous opioid peptides derived from preproenkephalin are involved in the antinociceptive and rewarding properties of nicotine and participate in the expression of physical nicotine dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is extensive evidence that acute stress induces an analgesic response in rats. On the other hand, repeatedly stressed animals may present the opposite effect, i.e., hyperalgesia. Furthermore, exposure to novelty is known to induce antinociception. The effects of repeated restraint stress on nociception after exposure to novelty, as measured by the tail-flick latency (TFL), were studied in adult male rats. The animals were stressed by restraint 1 h daily, 5 days a week for 40 days. The control group was not submitted to restraint. Nociception was assessed with a tail-flick apparatus. After being familiarized with the TFL apparatus, each group was subdivided into two other groups, i.e., with or without novelty. Animals were subjected to the TFL measurement twice. For the animals exposed to novelty, the first TFL measurement was made immediately before, and the second 2 min after a 2-min exposure to a new environment. While the control group presented an increased TFL after exposure to a novel environment, chronically stressed animals did not show this effect. These results suggest that repeated restraint stress induces an alteration in the nociceptive response, perhaps as a result of an alteration in endogenous opioids in these animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium ions are widely recognized to play a fundamental role in the regulation of several biological processes. Transient changes in cytoplasmic calcium ion concentration represent a key step for neurotransmitter release and the modulation of cell membrane excitability. Evidence has accumulated for the involvement of calcium ions also in nociception and antinociception, including the analgesic effects produced by opioids. The combination of opioids with drugs able to interfere with calcium ion functions in neurons has been pointed out as a useful alternative for safer clinical pain management. Alternatively, drugs that reduce the flux of calcium ions into neurons have been indicated as analgesic alternatives to opioids. This article reviews the manners by which calcium ions penetrate cell membranes and the changes in these mechanisms caused by opioids and calcium antagonists regarding nociceptive and antinociceptive events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural cell death is a well-known degenerative phenomenon occurring during development of the nervous system. The role of trophic molecules produced by target and afferent cells as well as by glial cells has been extensively demonstrated. Literature data demonstrate that cAMP can modulate the survival of neuronal cells. Cultures of mixed retinal cells were treated with forskolin (an activator of the enzyme adenylyl cyclase) for 48 h. The results show that 50 µM forskolin induced a two-fold increase in the survival of retinal ganglion cells (RGCs) in the absence of exogenous trophic factors. This effect was dose dependent and abolished by 1 µM H89 (an inhibitor of protein kinase A), 1.25 µM chelerythrine chloride (an inhibitor of protein kinase C), 50 µM PD 98059 (an inhibitor of MEK), 25 µM Ly 294002 (an inhibitor of phosphatidylinositol-3 kinase), 30 nM brefeldin A (an inhibitor of polypeptide release), and 10 µM genistein or 1 ng/ml herbimycin (inhibitors of tyrosine kinase enzymes). The inhibition of muscarinic receptors by 10 µM atropine or 1 µM telenzepine also blocked the effect of forskolin. When we used 25 µM BAPTA, an intracellular calcium chelator, as well as 20 µM 5-fluoro-2'-deoxyuridine, an inhibitor of cell proliferation, we also abolished the effect. Our results indicate that cAMP plays an important role controlling the survival of RGCs. This effect is directly dependent on M1 receptor activation indicating that cholinergic activity mediates the increase in RGC survival. We propose a model which involves cholinergic amacrine cells and glial cells in the increase of RGC survival elicited by forskolin treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasympathetic dysfunction is an independent risk factor in patients with coronary artery disease; thus, cholinergic stimulation is a potential therapeutic measure that may be protective by acting on ventricular repolarization. The purpose of the present study was to determine the effects of pyridostigmine bromide (PYR), a reversible anticholinesterase agent, on the electrocardiographic variables, particularly QTc interval, in patients with stable coronary artery disease. In a randomized double-blind crossover placebo-controlled study, simultaneous 12-lead electrocardiographic tracings were obtained at rest from 10 patients with exercise-induced myocardial ischemia before and 2 h after the oral administration of 45 mg PYR or placebo. PYR increased the RR intervals (pre: 921 ± 27 ms vs post: 1127 ± 37 ms; P<0.01) and, in contrast with placebo, decreased the QTc interval (pre: 401 ± 3 ms vs post: 382 ± 3 ms; P<0.01). No other electrocardiographic variables were modified (PR segment, QT interval, QT and QTc dispersions). Cholinergic stimulation with PYR caused bradycardia and reduced the QTc interval without important side effects in patients with coronary disease. These effects, if confirmed in studies over longer periods of administration, may suggest a cardioprotection by cholinergic stimulation with PYR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medial septum participates in the modulation of exploratory behavior triggered by novelty. Also, selective lesions of the cholinergic component of the septohippocampal system alter the habituation of rats to an elevated plus-maze without modifying anxiety indices. We investigated the effects of the intraseptal injection of the cholinergic immunotoxin 192 IgG-saporin (SAP) on the behavior of rats in an open-field. Thirty-nine male Wistar rats (weight: 194-230 g) were divided into three groups, non-injected controls and rats injected with either saline (0.5 µl) or SAP (237.5 ng/0.5 µl). Twelve days after surgery, the animals were placed in a square open-field (120 cm) and allowed to freely explore for 5 min. After the test, the rats were killed by decapitation and the septum, hippocampus and frontal cortex were removed and assayed for acetylcholinesterase activity. SAP increased acetylcholinesterase activity in the septum, hippocampus and frontal cortex and decreased the total distance run (9.15 ± 1.51 m) in comparison to controls (13.49 ± 0.91 m). The time spent in the center and at the periphery was not altered by SAP but the distance run was reduced during the first and second minutes (2.43 ± 0.36 and 1.75 ± 0.34 m) compared to controls (4.18 ± 0.26 and 3.14 ± 0.25 m). SAP-treated rats showed decreased but persistent exploration throughout the session. These results suggest that septohippocampal cholinergic mechanisms contribute to at least two critical processes, one related to the motivation to explore new environments and the other to the acquisition and storage of spatial information (i.e., spatial memory).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This prospective study analyzed the involvement of the autonomic nervous system in pulmonary and cardiac function by evaluating cardiovascular reflex and its correlation with pulmonary function abnormalities of type 2 diabetic patients. Diabetic patients (N = 17) and healthy subjects (N = 17) were evaluated by 1) pulmonary function tests including spirometry, He-dilution method, N2 washout test, and specific airway conductance (SGaw) determined by plethysmography before and after aerosol administration of atropine sulfate, and 2) autonomic cardiovascular activity by the passive tilting test and the magnitude of respiratory sinus arrhythmia (RSA). Basal heart rate was higher in the diabetic group (87.8 ± 11.2 bpm; mean ± SD) than in the control group (72.9 ± 7.8 bpm, P<0.05). The increase of heart rate at 5 s of tilting was 11.8 ± 6.5 bpm in diabetic patients and 17.6 ± 6.2 bpm in the control group (P<0.05). Systemic arterial pressure and RSA analysis did not reveal significant differences between groups. Diabetes intragroup analysis revealed two behaviors: 10 patients with close to normal findings and 7 with significant abnormalities in terms of RSA, with the latter subgroup presenting one or more abnormalities in other tests and clear evidence of cardiovascular autonomic dysfunction. End-expiratory flows were significantly lower in diabetic patients than in the control group (P<0.05). Pulmonary function tests before and after atropine administration demonstrated comparable responses by both groups. Type 2 diabetic patients have cardiac autonomic dysfunction that is not associated with bronchomotor tone alterations, probably reflecting a less severe impairment than that of type 1 diabetes mellitus. Yet, a reduction of end-expiratory flow was detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the antinociceptive effect of the pyrazolyl-thiazole derivative 2-(5-trichloromethyl-5-hydroxy-3-phenyl-4,5-dihydro-1 H-pyrazol-1-yl)-4-(4-bromophenyl)-5-methylthiazole (B50) in mice. Male albino Swiss mice (30-40 g) were used in the acetic acid-induced abdominal writhes and tail-immersion tests. B50 caused dose-dependent antinociception (8, 23 and 80 µmol/kg, sc) in the acetic acid writhing assay (number of writhes: vehicle: 27.69 ± 6.15; B50 (8 µmol/kg): 16.92 ± 3.84; B50 (23 µmol/kg): 13.85 ± 3.84; B50 (80 µmol/kg): 9.54 ± 3.08; data are reported as means ± SEM for 9 animals per group). On the other hand, B50 did not cause antinociception in the tail immersion assay. Naloxone (2.75 µmol/kg, sc) prevented B50-induced antinociception (number of writhes: vehicle-saline: 31.11 ± 3.15; vehicle-naloxone: 27.41 ± 3.70; B50 (80 µmol/kg)-saline: 8.70 ± 3.33; B50 (80 µmol/kg)-naloxone: 31.84 ± 4.26; morphine-saline: 2.04 ± 3.52; morphine-naloxone: 21.11 ± 4.26; 8-9 animals per group). The removal of the methyl group of the thiazole ring of B50 or substitution of the bromo substituent with the methyl at position 4 of the phenyl group, which is attached to the thiazole ring of B50, resulted in loss of activity, suggesting that these substituents are important for antinociceptive activity. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the antinociceptive effect of B50 is not related to nonspecific motor effects. The antinociceptive profile of B50 seems to be closer to nonsteroidal anti-inflammatory drugs than to classic opioid agents, since it had no analgesic effect in a thermally motivated test.