491 resultados para chemiluminescence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel multiplexed immunoassay for the analysis of phycotoxins in shellfish samples has been developed. Therefore, a regenerable chemiluminescence (CL) microarray was established which is able to analyze automatically three different phycotoxins (domoic acid (DA), okadaic acid (OA) and saxitoxin (STX)) in parallel on the analysis platform MCR3. As a test format an indirect competitive immunoassay format was applied. These phycotoxins were directly immobilized on an epoxy-activated PEG chip surface. The parallel analysis was enabled by the simultaneous addition of all analytes and specific antibodies on one microarray chip. After the competitive reaction, the CL signal was recorded by a CCD camera. Due to the ability to regenerate the toxin microarray, internal calibrations of phycotoxins in parallel were performed using the same microarray chip, which was suitable for 25 consecutive measurements. For the three target phycotoxins multi-analyte calibration curves were generated. In extracted shellfish matrix, the determined LODs for DA, OA and STX with values of 0.5±0.3 µg L(-1), 1.0±0.6 µg L(-1), and 0.4±0.2 µg L(-1) were slightly lower than in PBS buffer. For determination of toxin recoveries, the observed signal loss in the regeneration was corrected. After applying mathematical corrections spiked shellfish samples were quantified with recoveries for DA, OA, and STX of 86.2%, 102.5%, and 61.6%, respectively, in 20 min. This is the first demonstration of an antibody based phycotoxin microarray.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-energy intermediate in the peroxyoxalate reaction can be accumulated at room temperature under specific reaction conditions and in the absence of any reducing agent in up to micromolar concentrations. Bimolecular interaction of this intermediate, accumulated in the reaction of oxalyl chloride with hydrogen peroxide, with an activator (highly fluorescent aromatic hydrocarbons with low oxidation potential) added in delay shows unequivocally that this intermediate is responsible for chemiexcitation of the activator. Activation parameters for the unimolccular decomposition of this intermediate (Delta H(double dagger) = 11.2 kcal mol(-1); Delta S(double dagger) = -23.2 cal mol(-1) K(-1)) and for its bimolecular reaction with 9,10-diphenylanthracene (Delta H(double dagger) = 4.2 kcal mol(-1); Delta S(double dagger) = -26.9 cal mol(-1) K(-1)) show that this intermediate is much less stable than typical 1,2-dioxetanes and 1,2-dioxetanones and demonstrate its highly favored interaction with the activator. Therefore, it can be inferred that structural characterization of the high-energy intermediate in the presence of an activator must be highly improbable. The observed linear free-energy correlation between the catalytic rate constants and the oxidation potentials of several activators definitely confirms the occurrence of the chemically initiated electron-exchange luminescence (CIEEL) mechanism in the chemiexcitation step of the peroxyoxalate system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photodynamic therapy (PDT) is a combination of using a photosensitizer agent, light and oxygen that can cause oxidative cellular damage. This technique is applied in several cases, including for microbial control. The most extensively studied light sources for this purpose are lasers and LED-based systems. Few studies treat alternative light sources based PDT. Sources which present flexibility, portability and economic advantages are of great interest. In this study, we evaluated the in vitro feasibility for the use of chemiluminescence as a PDT light source to induce Staphylococcus aureus reduction. The Photogem (R) concentration varied from 0 to 75 mu g/ml and the illumination time varied from 60 min to 240 min. The long exposure time was necessary due to the low irradiance achieved with chemiluminescence reaction at mu W/cm(2) level. The results demonstrated an effective microbial reduction of around 98% for the highest photosensitizer concentration and light dose. These data suggest the potential use of chemiluminescence as a light source for PDT microbial control, with advantages in terms of flexibility, when compared with conventional sources. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical review presented is of the literature concerning the use of acidic solutions of potassium permanganate to generate chemiluminescence during the oxidation of both organic compounds and inorganic species. A brief overview of the reagent’s historical origin is followed by a chronological survey of its analytical applications, from what we believe to be the first report in 1975 through to those published up until mid-2001. This review does not include those papers where potassium permanganate has been used either in alkaline conditions or in conjunction with other chemiluminescence reagents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidations of twenty five organic and inorganic species, with solublised manganese(IV), were found to elicit analytically useful chemiluminescence with detection limits (3 × S/N) for Mn(II), Fe(II), morphine and codeine of 5 × 10–8 M, 2.5 × 10–7 M, 7.5 × 10–8 M and 5 × 10–8 M, respectively. Additionally, the corrected spectra from four different analytes gave wavelengths of maximum emission in the range from 733 nm up to 740 nm suggesting that all these chemiluminescence reactions shared a common emitting species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a rapid and robust method for the determination of urea in spent haemodialysis fluid as a measure of the efficiency of haemodialysis treatments. A novel flow analysis instrument (which generates a pulsed solution flow) was coupled with a chemiluminescence detection system, based on the oxidation of urea with hypobromite. The ‘pulsed-flow chemiluminescence analyser’ exhibited high precision (1.6% relative standard deviation (R.S.D.) for a 1×10−5 M urea standard, n=10) and good limit of detection (9×10−7 M, S/N=3) as a result of the rapid and reproducible mixing of small volumes of reagent and sample at the point of detection. The proposed chemiluminescence technique and an established urease-based laboratory procedure were compared, and showed a very similar trend for the change in urea concentration during a typical haemodialysis treatment. The relative chemiluminescence response from the oxidation of species with similar structure has revealed the inherent selectivity of the light producing pathway, but a positive interference was obtained from protein when this technique was applied to the determination of urea in serum samples. Arginine was identified as the predominant source of this interference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes, for the first time, a simple and effective synthetic route for covalently bonding the chemiluminescence reagent, (4-[4-(dichloromethylsilanyl)-butyl]-4’-methyl-2,2’-bipyridyl)bis(2,2’-bipyridyl)ruthenium(II) onto silica particles. The subsequent preparation of chemically regeneratable detection cells and their preliminary analytical evaluation with both sequential injection analysis and flow injection analysis are also reported. Unoptimised analytical figures of merit were established for standard solutions of codeine and sodium oxalate with detection limits calculated from three times the standard deviation of the blank signal, of 1 × 10–8 M and 3 × 10–7 M respectively. The chemically immobilised reagent exhibited some intriguing solvent and kinetic effects, which are also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-automated flow injection instrumentation, incorporating a small anion exchange column coupled with tris(2,2′-bipyridyl)ruthenium(II) (Ru(bipy)32+) chemiluminescence detection, was configured and utilised to develop rapid methodology for the determination of sodium oxalate in Bayer liquors. The elimination of both negative and positive interferences from aluminium(III) and, as yet, unknown concomitant organic species, respectively are discussed. The robustness of the methodology was considerably enhanced by using the temporally stable form of the chemiluminescence reagent, tris(2,2′-bipyridyl)ruthenium(III) perchlorate in dry acetonitrile. Real Bayer process samples were analysed and the results obtained compared well with those performed using standard methods within industrial laboratories.