992 resultados para cerebral artery
Resumo:
Stent placement has been applied in small case series as a rescue therapy in combination with different thrombolytic agents, percutaneous balloon angioplasty (PTA), and mechanical thromboembolectomy (MT) in acute stroke treatment. These studies report a considerable mortality and a high rate of intracranial hemorrhages when balloon-mounted stents were used. This study was performed to evaluate feasibility, efficacy, and safety of intracranial artery recanalization for acute ischemic stroke using a self-expandable stent.
Resumo:
The authors describe the use of the Cardica C-Port xA Distal Anastomosis System to perform an automated, high-flow extracranial-intracranial bypass. The C-Port system has been developed and tested in coronary artery bypass surgery for rapid distal coronary artery anastomoses. Air-powered, it performs an automated end-to-side anastomosis within seconds by nearly simultaneously making an arteriotomy and inserting 13 microclips into the graft and recipient vessel. Intracranial use of the device was first simulated in a cadaver prepared for microsurgical anatomical dissection. The authors used this system in a 43-year-old man who sustained a subarachnoid hemorrhage after being assaulted and was found to have a traumatic pseudoaneurysm of the proximal intracranial internal carotid artery. The aneurysm appeared to be enlarging on serial imaging studies and it was anticipated that a bypass would probably be needed to treat the lesion. An end-to-side bypass was performed with the C-Port system using a saphenous vein conduit extending from the common carotid artery to the middle cerebral artery. The bypass was demonstrated to be patent on intraoperative and postoperative arteriography. The patient had a temporary hyperperfusion syndrome and subsequently made a good neurological recovery. The C-Port system facilitates the performance of a high-flow extracranial-intracranial bypass with short periods of temporary arterial occlusion. Because of the size and configuration of the device, its use is not feasible in all anatomical situations that require a high-flow bypass; however it is a useful addition to the armamentarium of the neurovascular surgeon.
Resumo:
BACKGROUND AND PURPOSE: The purpose of this study was to evaluate the safety and efficacy of local intra-arterial thrombolysis (LIT) using urokinase in patients with acute stroke due to middle cerebral artery (MCA) occlusion. METHODS: We analyzed clinical and radiological findings and functional outcome 3 months after LIT with urokinase of 100 consecutive patients. To measure outcome, the modified Rankin scale (mRs) score was used. RESULTS: Angiography showed occlusion of the M1 segment of the MCA in 57 patients, of the M2 segment in 21, and of the M3 or M4 segment in 22. The median National Institutes of Health Stroke Scale (NIHSS) score at admission was 14, and, on average, 236 minutes elapsed from symptom onset to LIT. Forty-seven patients (47%) had an excellent outcome (mRs score 0 to 1), 21 (21%) a good outcome (mRs score 2), and 22 (22%) a poor outcome (mRs score 3 to 5). Ten patients (10%) died. Excellent or good outcome (mRs score < or =2) was seen in 59% of patients with M1 or M2 and 95% of those with M(3) or M(4) MCA occlusions. Recanalization as seen on angiography was complete (thrombolysis in myocardial infarction [TIMI] grade 3) in 20% of patients and partial (TIMI grade 2) in 56% of patients. Age <60 years (P<0.05), low NIHSS score at admission (P<0.00001), and vessel recanalization (P=0.0004) were independently associated with excellent or good outcome and diabetes with poor outcome (P=0.002). Symptomatic cerebral hemorrhage occurred in 7 patients (7%). CONCLUSIONS: LIT with urokinase that is administered by a single organized stroke team is safe and can be as efficacious as thrombolysis has been in large multicenter clinical trials.
Resumo:
BACKGROUND AND PURPOSE The use of thrombolysis in patients with minor neurological deficits and large vessel occlusion is controversial. METHODS We compared the outcome of patients with low National Institutes of Health Stroke Scale (NIHSS) scores and large vessel occlusions between thrombolysed and non-thrombolysed patients. RESULTS 88 (1.7%) of 5312 consecutive patients with acute (within 24 h) ischaemic stroke had occlusions of the internal carotid or the main stem of the middle cerebral artery and baseline NIHSS scores ≤5.47 (53.4%) were treated without thrombolysis, and 41 (46.6%) received intravenous thrombolysis, endovascular therapy or both. Successful recanalisation on MR or CT angiography at 24 h was more often observed in thrombolysed than in non-thrombolysed patients (78.9% versus 10.5%; p<0.001). Neurological deterioration (increase of NIHSS score ≥1 compared to baseline) was observed in 22.7% of non-thrombolysed versus 10.3% of thrombolysed after 24 h (p=0.002), in 33.3% versus 12.5% at hospital discharge (p=0.015) and in 41.4% versus 15% at 3 months (p<0.001). Symptomatic intracerebral haemorrhage occurred in two (asymptomatic in five) thrombolysed and in none (asymptomatic in three) non-thrombolysed. Thrombolysis was an independent predictor of favourable outcome (p=0.030) but not survival (p=0.606) at 3 months. CONCLUSIONS Non-thrombolysed patients with mild deficits and large vessel occlusion deteriorated significantly more often within 3 months than thrombolysed patients. Symptomatic intracerebral haemorrhages occurred in less than 5% of patients in both groups. These data suggest that thrombolysis is safe and effective in these patients. Therefore, randomised trials in patients with large vessel occlusions and mild or rapidly improving symptoms are needed.
Resumo:
BACKGROUND The aim of this study was to analyze the influence of the location of middle cerebral artery (MCA) occlusion on recanalization, complications and outcome after endovascular therapy. METHODS Four-hundred sixty-four patients with acute MCA occlusions were treated with endovascular therapy. RESULTS Two-hundred ninety-three patients had M1 occlusions, 116 had M2, and 55 had M3/4 occlusions. Partial or complete recanalization was more frequently achieved in M1 (76.8%) than in M2 (59.1%) or M3/4 (47.3%, p < 0.001) occlusions, but favorable outcome (modified Rankin Scale 0-2) was less frequent in M1 (50.9%) than M2 (63.7%) or M3/4 (72.7%, p = 0.018) occlusions. Symptomatic intracerebral hemorrhage (ICH) did not differ between occlusion sites, but asymptomatic ICH was more common in M1 (22.6%) than in M2 occlusions (8.6%, p = 0.003). Recanalization was associated with favorable outcome in M1 (p < 0.001) and proximal M2 (p = 0.003) but not in distal M2 or M3/4 occlusions. CONCLUSIONS Recanalization with endovascular therapy was more frequently achieved in patients with proximal than distal MCA occlusions, but recanalization was associated with favorable outcome only in M1 and proximal M2 occlusions. Outcome was better with distal than proximal occlusions. This study shows that recanalization can be used as a surrogate marker for clinical outcome only in patients with proximal occlusions.
Resumo:
A number of thrombectomy devices using a variety of methods have now been developed to facilitate clot removal. We present research involving one such experimental device recently developed in the UK, called a ‘GP’ Thrombus Aspiration Device (GPTAD). This device has the potential to bring about the extraction of a thrombus. Although the device is at a relatively early stage of development, the results look encouraging. In this work, we present an analysis and modeling of the GPTAD by means of the bond graph technique; it seems to be a highly effective method of simulating the device under a variety of conditions. Such modeling is useful in optimizing the GPTAD and predicting the result of clot extraction. The aim of this simulation model is to obtain the minimum pressure necessary to extract the clot and to verify that both the pressure and the time required to complete the clot extraction are realistic for use in clinical situations, and are consistent with any experimentally obtained data. We therefore consider aspects of rheology and mechanics in our modeling.
Resumo:
Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.
Resumo:
Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.
Resumo:
A case of giant aneurysm of the left middle cerebral artery, in a 28-year-old right-handed woman, successfuly operated is reported. The aneurysm measur- ing 35 x 27 x 23 mm showed clinical manifestations as a space-occupying lesion. The patient recovered completely after the total excision of the aneurysm.
Resumo:
Foram estudados 26 encéfalos de gatos, adultos, sem diferenciação de sexo, sem raça definida, corados com látex e fixados por solução aquosa de formaldeído. As artérias cerebrais caudais, direita e esquerda, apresentaram-se únicas em 96,1 e 88,4% dos casos, respectivamente. Em 69,2% dos casos no antímero direito e 80,8% no esquerdo, a artéria cerebral caudal originou-se pela anastomose entre o ramo caudal da artéria carótida interna, com maior contribuição, e o ramo terminal da artéria basilar. Em 88,4% dos casos no antímero direito e em 84,6% no esquerdo, a artéria cerebral caudal originou a artéria tectal rostral e um ramo caudal. O ramo caudal bifurcou-se e vascularizou os colículos rostrais e caudais dos corpos quadrigêmeos e em alguns casos contribuiu na formação do plexo coroide do terceiro ventrículo. A artéria tectal rostral seguiu ventralmente ao lobo piriforme e durante seu trajeto liberou ramos para o hipocampo e, no antímero esquerdo, supriu a superfície dorsal do tálamo, contribuindo para a formação do plexo coroide do terceiro ventrículo.
Resumo:
Objectives. To examine the effects of betamethasone administration on umbilical artery (UA), middle cerebral artery (MCA) and ductus venosus (DV) Doppler flow. Design. Longitudinal prospective study. Setting: Fetal Surveillance Unit, Department of Obstetrics and Gynecology, University of Sao Paulo, Sao Paulo, Brazil. Population. Thirty-two singleton pregnancies complicated by fetal growth restriction with absent end-diastolic flow in the UA. Methods. Pulsatility index (PI) of the UA, MCA and DV was measured from 26 to 34 weeks prior to and within 24 or 48 hours after starting betamethasone treatment course. Analysis of variance for repeated measures was used to determine the changes in the fetal hemodynamic Doppler flow following maternal corticosteroid administration. Main outcome measures. Improvement of UA-PI within 24 hours and DV-PIV (venous pulsatility) within 48 hours from the first betamethasone dose. Results. Mean gestational age at delivery was 29.3 (1.8) weeks and birthweight was 806.6 (228.2) g. A reduction in the UA-PI was observed in 29 (90.6%) cases, with return of end-diastolic flow in 22 (68.7%). The mean UA-PI were 2.84 (0.52) before corticosteroid administration, 2.07 (0.56) within 24 hours and 2.42 (0.75) after 48 hours, with a significant difference along the evaluations (p0.001). No significant changes in the MCA Doppler were observed. DV-PIV decreased from 1.06 (0.23) prior corticosteroids administration to 0.73 (0.16) within 24 hours and 0.70 (0.19) after 48 hours (p0.001). Conclusions. There was reduction in the umbilical artery and in the DV pulsatility indices within 24 hours from betamethasone administration that was maintained up to 48 hours.
Resumo:
Purpose. To report a case of successful thrombolysis performed in a patient with an incidental unruptured intracranial aneurysm and review the literature. Case Report. Patient admitted for ischemic stroke due to left posterior cerebral artery occlusion, with an incidental right middle cerebral artery aneurysm, who underwent treatment with tissue plasminogen activator (rtPA) resulting in clinical improvement without complications. Conclusion. The presence of unruptured intracranial aneurysms is considered as a contraindication to thrombolysis, due to a potentially higher hemorrhagic risk of aneurysm rupture. Patients, otherwise, eligible for thrombolysis are usually excluded from receiving this emergent treatment, despite its potential benefits. A reevaluation of the strict exclusion criteria for thrombolysis in acute stroke patients should be considered.
Resumo:
We compared cerebral blood flow velocity during anesthesia with sevoflurane and halothane in 23 children admitted for elective surgery (age, 0.4-9.7 yr; median age, 1.9 yr; ASA physical status I-II). Inhaled induction was performed in a randomized sequence with sevoflurane or halothane. Under steady-state conditions, cerebral blood flow velocity (systolic [V(s)], mean [V(mn)], and diastolic [VD]) were measured by a blinded investigator using transcranial pulsed Doppler ultrasonography. The anesthetic was then changed. CBFV measurements were repeated after washout of the first anesthetic and after steady-state of the second (equivalent minimal alveolar concentration to first anesthetic). The resistance index was calculated. VD and V(mn) were significantly lower during sevoflurane (V(mn) 1.35 m/s) than during halothane (V(mn) 1.50 m/s; P = 0.001), whereas V(s) was unchanged. The resistance index was lower during halothane (P < 0.001). Our results indicate lower vessel resistance and higher mean velocity during halothane than during sevoflurane. IMPLICATIONS: The mean cerebral blood flow velocity is significantly decreased in children during inhaled anesthesia with sevoflurane than during halothane. This might be relevant for the choice of anesthetic in children with risk of increased intracranial pressure, neurosurgery, or craniofacial osteotomies.
Resumo:
The c-Jun-N-terminal kinase (JNK) pathway has been shown to play an important role in excitotoxic neuronal death and several studies have demonstrated a neuroprotective effect of D-JNKi, a peptide inhibitor of JNK, in various models of cerebral ischemia. We have now investigated the effect of D-JNKi in a model of transient focal cerebral ischemia (90 min) induced by middle cerebral artery occlusion (MCAo) in adult male rats. D-JNKi (0.1 mg/kg), significantly decreased the volume of infarct, 3 days after cerebral ischemia. Sensorimotor and cognitive deficits were then evaluated over a period of 6 or 10 days after ischemia and infarct volumes were measured after behavioral testing. In behavioral studies, D-JNKi improved the general state of the animals as demonstrated by the attenuation of body weight loss and improvement in neurological score, as compared with animals receiving the vehicle. Moreover, D-JNKi decreased sensorimotor deficits in the adhesive removal test and improved cognitive function in the object recognition test. In contrast, D-JNKi did not significantly affect the infarct volume at day 6 and at day 10. This study shows that D-JNKi can improve functional recovery after transient focal cerebral ischemia in the rat and therefore supports the use of this molecule as a potential therapy for stroke.
Resumo:
The c-Jun-N-terminal kinase signaling pathway (JNK) is highly activated during ischemia and plays an important role in apoptosis and inflammation. We have previously demonstrated that D-JNKI1, a specific JNK inhibitor, is strongly neuroprotective in animal models of stroke. We presently evaluated if D-JNKI1 modulates post-ischemic inflammation such as the activation and accumulation of microglial cells. Outbred CD1 mice were subjected to 45 min middle cerebral artery occlusion (MCAo). D-JNKI1 (0.1 mg/kg) or vehicle (saline) was administered intravenously 3 h after MCAo onset. Lesion size at 48 h was significantly reduced, from 28.2+/-8.5 mm(3) (n=7) to 13.9+/-6.2 mm(3) in the treated group (n=6). Activation of the JNK pathway (phosphorylation of c-Jun) was observed in neurons as well as in Isolectin B4 positive microglia. We quantified activated microglia (CD11b) by measuring the average intensity of CD11b labelling (infra-red emission) within the ischemic tissue. No significant difference was found between groups. Cerebral ischemia was modelled in vitro by subjecting rat organotypic hippocampal slice cultures to oxygen (5%) and glucose deprivation for 30 min. In vitro, D-JNKI1 was found predominantly in NeuN positive neurons of the CA1 region and in few Isolectin B4 positive microglia. Furthermore, 48 h after OGD, microglia were activated whereas resting microglia were found in controls and in D-JNKI1-treated slices. Our study shows that D-JNKI1 reduces the infarct volume 48 h after transient MCAo and does not act on the activation and accumulation of microglia at this time point. In contrast, in vitro data show an indirect effect of D-JNKI1 on the modulation of microglial activation.