861 resultados para ceramide metabolism
Resumo:
Directed evolution of cytochrome P450 enzymes represents an attractive means of generating novel catalysts for specialized applications. Xenobiotic-metabolizing P450s are particularly well suited to this approach due to their inherent wide substrate specificity. In the present study, a novel method for DNA shuffling was developed using an initial restriction enzyme digestion step, followed by elimination of long parental sequences by size-selective filtration. P450 2C forms were subjected to a single round of shuffling then coexpressed with reductase in E. coli. A sample (54 clones) of the resultant library was assessed for sequence diversity, hemo- and apoprotein expression, and activity towards the substrate indole. All mutants showed a different RFLP pattern compared to all parents, suggesting that the library was free from contamination by parental forms. Haemoprotein expression was detectable in 45/54 (83%) of the mutants sampled. Indigo production was less than or comparable to the activities of one or more of the parental P450s, but three mutants showed indirubin production in excess of that seen with any parental form, representing a gain of function. In conclusion, a method is presented for the effective shuffling of P450 sequences to generate diverse libraries of mutant P450s containing a high proportion of correctly folded hemoprotein, and minimal contamination with parental forms.
Resumo:
Background/Aims: The aim of this study is to compare the splanchnic non-hepatic hemodynamics and the metabolic changes during orthotopic liver transplantation between the conventional with bypass and the piggyback methods. Methodology: A prospective, consecutive series of 59 primary transplants were analyzed. Oxygen consumption, glucose, potassium, and lactate metabolism were quantitatively estimated from blood samples from the radial artery and portal vein, collected up to 120 minutes after graft reperfusion. Mean arterial pressure, portal venous pressure, portal venous blood flow, and splanchnic vascular resistance were also measured or calculated at postreperfusion collection times. Results: There was a greater increase in portal venous blood flow (p=0.05) and lower splanchnic vascular resistance (p=0.04) in the piggyback group. Mean arterial pressure and portal venous pressure were similar for both groups. Oxygen, glucose and potassium consumption were higher in the piggyback group, but none of the metabolic parameters differed significantly between groups. Conclusions: In conclusion, the study detected a higher portal venous blood flow and a lower and splanchnic vascular resistance associated with the piggyback technique. After graft reperfusion, no difference in the splanchnic non-hepatic metabolic parameters was observed between the conventional with bypass and the piggyback methods of orthotopic liver transplantation.
Resumo:
Objectives: This study evaluated the effect of magnesium dietary deficiency on bone metabolism and bone tissue around implants with established osseointegration. Materials and methods: For this, 30 rats received an implant in the right tibial metaphysis. After 60 days for healing of the implants, the animals were divided into groups according to the diet received Control group (CTL) received a standard diet with adequate magnesium content, while test group (Mg) received the same diet except for a 90% reduction of magnesium. The animals were sacrificed after 90 days for evaluation of calcium, magnesium, osteocalcin and parathyroid hormone (PTH) serum levels and the deoxypyridinoline (DPD) level in the urine. The effect of magnesium deficiency on skeletal bone tissue was evaluated by densitometry of the lumbar vertebrae, while the effect of bone tissue around titanium implants was evaluated by radiographic measurement of cortical bone thickness and bone density. The effect on biomechanical characteristics was verified by implant removal torque testing. Results: Magnesium dietary deficiency resulted in a decrease of the magnesium serum level and an increase of PTH and DPD levels (P <= 0.05). The Mg group also presented a loss of systemic bone mass decreased cortical bone thickness and lower values of removal torque of the implants (P <= 0.01). Conclusions: The present study concluded that magnesium-deficient diet had a negative influence on bone metabolism as well as on the bone tissue around the implants.
Resumo:
Closantel is an anthe lmintic which associates with plasma albumin and is useful for the control of sheep parasites, such as Haemonchus contortus, that ingest blood. However, the utility of closantel for parasite control has been threatened by the emergence of resistance. The mechanisms of resistance are unknown. A closantel-resistant and a closantel-susceptible isolate of H. contortus were compared with respect to the distribution and metabolism of closantel. Neither strain appeared to metabolise closantel in vitro or in vivo. Following treatment of infected sheep with radioactively labelled closantel, isotope levels in closantel-resistant adult H. contortus were significantly lower than in susceptible worms. This reduced accumulation of drug could contribute to closantel resistance by mechanisms such as reduced feeding, failure to dissociate the drug-albumin complex in the gut or increased efflux of closantel from resistant worms. (C) 1997 Australian Society for Parasitology.
Resumo:
Background. Acute mesenteric ischemia is a potentially fatal vascular emergency with mortality rates ranging between 60% and 80%. Several studies have extensively examined the hemodynamic and metabolic effects of superior mesenteric artery occlusion. On the other hand, the cardiocirculatory derangement and the tissue damage induced by intestinal outflow obstruction have not been investigated systematically. For these reasons we decided to assess the initial impact of venous mesenteric occlusion on intestinal blood flow distribution, and correlate these findings with other systemic and regional perfusion markers. Methods. Fourteen mongrel dogs were subjected to 45 min of superior mesenteric artery (SMAO) or vein occlusion (SMVO), and observed for 120 min after reperfusion. Systemic hemodynamics were evaluated using Swan-Ganz and arterial catheters. Regional blood flow (ultrasonic flow probes), intestinal O(2)-derived variables, and mesenteric-arterial and tonometric-arterial pCO(2) gradients (D(mv-a)pCO(2) and D(t-a)pCO(2)) were also calculated. Results. SMVO was associated with hypotension and low cardiac output. A significant increase in the regional pCO(2) gradients was also observed in both groups during the ischemic period. After reperfusion, a progressive reduction in D(mv-a)pCO(2) occurred in the SMVO group; however, no improvement in D(t-p)CO(2) was observed. The histopathologic injury scores were 2.7 +/- 0.5 and 4.8 +/- 0.2 for SMAO and SMVO, respectively. Conclusions. SMV occlusion promoted early and significant hemodynamic and metabolic derangement at systemic and regional levels. Additionally, systemic pCO(2) gradient is not a reliable parameter to evaluate the local intestinal oxygenation. Finally, the D(t-a)pCO(2) correlates with histologic changes during intestinal congestion or ischemia. However, minor histologic changes cannot be detected using this methodology. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective: To clarify whether the metabolism of triglyceride-rich lipoproteins and lipid transfer to high-density lipoprotein (HDL) are altered in patients with polycystic ovary syndrome (PCOS). Design: Case control study. Setting: Endocrinology clinics. Patient(s): Eight normal-weight (NW) and 15 obese (013) patients with PCOS were compared with 10 NW and 10 Ob women without PCOS paired for age and body mass index. Intervention(s): Determination of triglyceride-rich lipoprotein metabolism and lipid transfer to HDL. Main Outcome Measure(s): Participants were injected triglyceride-rich emulsions labeled with (14)C-cholesteryl esters and (3)H-triglycerides and the fractional clearance rate (FCR, in min(-1)) of labels was determined. Lipid transfer from artificial nanoemulsions to HDL was performed by incubating radioactively labeled lipid nanoemulsions with plasma during 1 hour, followed by radioactive counting of HDL-containing supernatant after chemical precipitation. Result(s): Lipolysis estimated by triglyceride FCR was equal in PCOS groups (NW = 0.043 +/- 0.032, Ob = 0.033 +/- 0.009) and respective controls (NW = 0.039 +/- 0.015, Ob = 0.044 +/- 0.019). However, the remnant removal as estimated by cholesteryl ester FCR was reduced in both PCOS groups (NW = 0.005 +/- 0.006, Ob = 0.005 +/- 0.005) compared with controls (NW = 0.016 +/- 0.006, Ob = 0.011 +/- 0.072). Lipid transfer rates were not different among groups, but triglyceride transfer rates were positively correlated with homeostasis model assessment estimate of insulin resistance in PCOS. Conclusion(s): PCOS patients showed decreased removal of atherogenic remnants even when fasting glucose was <100 mg/dL. This reinforces the usefulness of the measures taken to prevent cardiovascular events in PCOS patients. (Fertil Steril (R) 2010;93:1948-56. (C)2010 by American Society for Reproductive Medicine.)
Resumo:
The objective of this study was to evaluate the influence of anti-tumor necrosis factor (anti-TNF) in juvenile idiopathic arthritis (DA), ankylosing spondylitis (AS) or psoriatic arthritis (PsA). Sixty-two patients were investigated: 7 DA; 37 AS; and 18 PsA. Caucasian race accounted for 79% and 29% were female. Mean age was 40.4 +/- 12.6years. None of the patients had a history of diabetes, and none had used oral hypoglycemic agents or insulin. Treatment was with adalimumab, infliximab and etanercept. Glucose, inflammatory markers and prednisone dose were assessed at baseline, as well as after three and six months of treatment. The mean erythrocyte sedimentation rate was significantly lower at three months and six months than at baseline (13.7 +/- 18.0 and 18 +/- 22.5 vs. 27.9 +/- 23.4 mm; p = 0.001). At baseline, three months and six months, we found the following: mean C-reactive protein levels were comparable (22.1 +/- 22.7, 14.5 +/- 30.7 and 16.0 +/- 23.8 mg/L, respectively; p = 0.26); mean glucose levels remained unchanged (90.8 +/- 22.2 mg/dl, 89.5 +/- 14.6 mg/dl and 89.8 +/- 13.6 mg/dl, respectively; p = 0.91); and mean prednisone doses were low and stable (3.9 +/- 4.9 mg/day, 3.7 +/- 4.8 mg/day and 2.6 +/- 4.0 mg/day, respectively; p = 0.23). During the first six months of treatment, anti-TNF therapy does not seem to influence glucose metabolism in JIA, AS or PsA. (C) 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
This study investigated the in vivo effects of the Bothrops Jararaca venom (BjV) on general metabolic profile and, specifically. oil muscle protein metabolism in rats. The crude venom (0.4 mg/kg body weight, IV) was infused in awake rats, and plasma activity of enzymes and metabolites levels were determined after 1, 2, 3, and 4 hours. BjV increased urea, lactate, and activities of creatine kinase. lactate dehydrogenase. and aspartate aminotransferase after 4 hours. The content of liver glycogen was reduced by BjV. Protein metabolism was evaluated by means of microdialysis technique and in isolated muscles. BjV induced increase in the muscle interstitial-arterial tyrosine concentration difference. indicating a high protein catabolism. The myotoxicity induced by this venom is associated with reduction of protein synthesis and increase in rates of overall proteolysis, which was accompanied by activation of lysosomal and ubiquitin-proteasome systems without changes in protein levels of cathepsins and ubiquitin-protein conjugates.
Resumo:
Metoprolol is a beta-blocker and its racemic mixture is used for the treatment of hypertension. In the present study we investigated the influence of CYP2D and CYP3A on the stereoselective metabolism of metoprolol in rats. Male Wistar rats (n = 6 per group) received racemic metoprolol (15 mg/kg) orally, with or without pretreatment with the CYP inhibitor ketoconazole (50 mg/kg), cimetidine (150 mg/kg), or quinidine (80 mg/kg). Blood samples were collected up to 48 h after metoprolol administration. The plasma concentrations of the stereoisomers of metoprolol, O-demethylmetoprolol (ODM), alpha-hydroxymetoprolol (OHM) (Chiralpak(R) AD column), and metoprolol acidic metabolite (AODM) (Chiralcel(R) OD-R column) were determined by HPLC using fluorescence detection (lambda(exc) = 229 nm; lambda(em) = 298 nm). CYP3A inhibition by ketoconazole reduced the plasma concentrations of ODM and AODM and favored the formation of OHM. CYP2D and CYP3A inhibition by cimetidine reduced the plasma concentrations of OHM and AODM and favored the formation of ODM. The inhibition of CYP2D by quinidine reduced the plasma concentrations of OHM and favored the formation of ODM. In conclusion, the results suggest that CYP3A is involved in the formation of ODM and CYP2D is involved in the formation of AODM. Chirality 21:886-893, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Double aneuploidy, (48,XXY,+21) of maternal origin in a child born to a 13-year-old mother: evoluation of the maternal folate metabolism: The occurrence of non-mosaic double trisomy is exceptional in newborns. In this paper, a 48,XXY,+21 child, the parental origin of the extra chromosomes and the evaluation of the maternal folate metabolism are presented. The infant was born to a 13-year-old mother and presented with the typical clinical features of Down syndrome (DS). The origin of the additional chromosomes was maternal and most likely resulted from errors during the first meiotic division. Molecular analysis of 12 genetic polymorphisms involved in the folate metabolism revealed that the mother is heterozygous for the MTHFR C677T and TC2 A67G polymorphisms, and homozygous for the mutant MTRR A66G polymorphism. The maternal homocysteine concentration was 4.7 mu mol/L, a value close to the one considered as a risk factor for DS in our previous study. Plasma methylmalonic acid and serum folate concentrations were 0.17 mu mol/L and 18.4 ng/mL, respectively. It is possible that the presence of allelic variants for the folate metabolism and Hey concentration might have favored errors in chromosomal disjunction (hiring gametogenesis in this young mother. To our knowledge, this is the first patient with non-mosaic Down-Klinefelter born to a teenage mother, resulting from a rare fertilization event combining an abnormal 25,XX,+21 oocyte and a 23,Y spermatozoon.
Resumo:
center dot Pharmacokinetic interactions between albendazole and praziquantel are based on plasma concentrations of the enantiomeric mixture of both drugs with contradictory data, although the antiparasitic activity arises from (-)-(R)-praziquantel and (+)-albendazole sulfoxide. WHAT THIS STUDY ADDS center dot The pharmacokinetic interaction between albendazole and praziquantel is enantioselective. Praziquantel increased the plasma concentrations of (+)-albendazole sulfoxide more than those of (-)-albendazole sulfoxide and the administration of albendazole did not change the kinetic disposition of (+)-(S)-praziquantel, but increased the plasma concentration of (-)-(R)-praziquantel. AIM This study investigated the kinetic disposition, metabolism and enantioselectivity of albendazole (ABZ) and praziquantel (PZQ) administered alone and in combination to healthy volunteers. METHODS A randomized crossover study was carried out in three phases (n = 9), in which some volunteers started in phase 1 (400 mg ABZ), others in phase 2 (1500 mg PZQ), and the remaining volunteers in phase 3 (400 mg ABZ + 1500 mg PZQ). Serial blood samples were collected from 0-48 h after drug administration. Pharmacokinetic parameters were calculated using a monocompartmental model with lag time and were analyzed using the Wilcoxon test; P < 0.05. RESULTS The administration of PZQ increased the plasma concentrations of (+)-ASOX (albendazole sulphoxide) by 264% (AUC 0.99 vs. 2.59 mu g ml-1 h), (-)-ASOX by 358% (0.14 vs. 0.50 mu g ml-1 h) and albendazole sulfone (ASON) by 187% (0.17 vs. 0.32 mu g ml-1 h). The administration of ABZ did not change the kinetic disposition of (+)-(S)-PZQ (-)-(R)-4-OHPZQ or (+)-(S)-4-OHPZQ, but increased the plasma concentration of (-)-(R)-PZQ by 64.77% (AUC 0.52 vs. 0.86 mu g ml-1 h). CONCLUSIONS The pharmacokinetic interaction between ABZ and PZQ in healthy volunteers was demonstrated by the observation of increased plasma concentrations of ASON, both ASOX enantiomers and (-)-(R)-PZQ. Clinically, the combination of ABZ and PZQ may improve the therapeutic efficacy as a consequence of higher concentration of both active drugs. On the other hand, the magnitude of this elevation may represent an increased risk of side effects, requiring, certainly, reduction of the dosage. However, further studies are necessary to evaluate the efficacy and safety of this combination.
Resumo:
center dot Citalopram (CITA) pharmacokinetics are enantioselective in healthy volunteers and the metabolism of (+)-(S)-CITA to (+)-(S)-DCITA is dependent on CYP2C19. Omeprazole is a potent CYP2C19 inhibitor. WHAT THIS STUDY ADDS center dot This study indicates that omeprazole induces a loss of enantioselectivity in the CITA pharmacokinetics because of the selective inhibition of (+)-(S)-CITA metabolism. AIM The study assessed the influence of omeprazole on the kinetic disposition of the (+)-(S)-citalopram (CITA) and (-)-(R)-CITA enantiomers in healthy volunteers. METHODS In a cross-over study, healthy volunteers (n = 9) phenotyped as extensive metabolizers of CYP2C19 and CYP2D6 and with an oral midazolam clearance ranging from 10.9 to 149.3 ml min-1 kg-1 received a single dose of racemic CITA (20 mg orally) in combination or not with omeprazole (20 mg day-1 for 18 days). Serial blood samples were collected up to 240 h after CITA administration. CITA and demethylcitalopram (DCITA) enantiomers were analyzed by LC-MS/MS using a Chiralcel (R) OD-R column. RESULTS The kinetic disposition of CITA was enantioselective in the absence of treatment with omeprazole, with the observation of a greater proportion of plasma (-)-(R)-CITA [AUC S : R ratio of 0.53 (95% CI 0.41, 0.66) for CITA and 1.08 (95% CI 0.80, 1.76) for DCITA] than (+)-(S)-CITA. Racemic CITA administration to healthy volunteers in combination with omeprazole showed a loss of enantioselectivity in CITA pharmacokinetics with an increase of approximately 120% in plasma (+)-(S)-CITA concentrations [AUC S : R ratio of 0.95 (95% CI 0.72, 1.10) for CITA and 0.95 (95% CI 0.44, 1.72) for DCITA]. CONCLUSIONS The administration of multiple doses of omeprazole preferentially inhibited (+)-(S)-CITA metabolism in healthy volunteers. Although omeprazole increased plasma concentrations of (+)-(S)-CITA by approximately 120%, it is difficult to evaluate the clinical outcome because the range of plasma CITA concentrations related to maximum efficacy and minimum risk of adverse effects has not been established.
Resumo:
Objectives Alterations in the enzymes involved in homocysteine (Hcy) metabolism or vitamin deficiency could play a role in coronary artery disease (CAD) development. This study investigated the influence of MTHFR and MTR gene polymorphisms, plasma folate and MMA on Hcy concentrations and CAD development. MMA and folate concentrations were also investigated according to the polymorphisms. Methods Two hundred and eighty-three unrelated Caucasian individuals undergoing coronary angiography (175 with CAD and 108 non-CAD) were assessed in a case-control study. Plasma Hcy and MMA were measured by liquid chromatography/tandem mass spectrometry. Plasma folate was measured by competitive immunoassay. Dietary intake was evaluated using a nutritional questionnaire. Polymorphisms MTHFR and MTR were investigated by polymerase chain reaction (PCR) followed by enzyme digestion or allele-specific PCR. Results Hcy mean concentrations were higher in CAD patients compared to controls, but below statistical significance (P = 0.246). Increased MMA mean concentrations were frequently observed in the CAD group (P = 0.048). Individuals with MMA concentrations > 0.5 mu mol/l (vitamin B(12) deficiency) were found only in the CAD group (P = 0.004). A positive correlation between MMA and Hcy mean concentrations was observed in both groups, CAD (P = 0.001) and non-CAD (P = 0.020). MMA mean concentrations were significantly higher in patients with hyperhomocysteinemia in both groups, CAD and non-CAD (P = 0.0063 and P = 0.013, respectively). Folate mean concentration was significantly lower in carriers of the wild-type MTHFR 1298AA genotype (P = 0.010). Conclusion Our results suggest a correlation between the MTHFR A1298C polymorphism and plasma folate concentration. Vitamin B(12) deficiency, reflected by increased MMA concentration, is an important risk factor for the development both of hyperhomocysteinemia and CAD.
Resumo:
Individual differences in drug efficacy or toxicity can be influenced by genetic factors. We investigated whether polymorphisms of pharmacogenes that interfere with metabolism of drugs used in conditioning regimen and graft-versus-host disease (GvHD) prophylaxis could be associated with outcomes after HLA-identical hematopoietic stem cell transplantation (HSCT). Pharmacogenes and their polymorphisms were studied in 107 donors and patients with leukemia receiving HSCT. Candidate genes were: P450 cytochrome family (CYP2B6), glutathione-S-transferase family (GST), multidrug-resistance gene, methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR). The end points studied were oral mucositis (OM), hemorrhagic cystitis (HC), toxicity and venoocclusive disease of the liver (VOD), GvHD, transplantation-related mortality (TRM) and survival. Multivariate analyses, using death as a competing event, were performed adjusting for clinical factors. Among other clinical and genetic factors, polymorphisms of CYP2B6 genes that interfere with cyclophosphamide metabolism were associated with OM (recipient CYP2B6*4; P=0.0067), HC (recipient CYP2B6*2; P=0.03) and VOD (donor CYP2B6*6; P=0.03). Recipient MTHFR polymorphisms (C677T) were associated with acute GvHD (P=0.03), and recipient VDR TaqI with TRM and overall survival (P=0.006 and P=0.04, respectively). Genetic factors that interfere with drug metabolisms are associated with treatment-related toxicities, GvHD and survival after HLA-identical HSCT in patients with leukemia and should be investigated prospectively.