974 resultados para cellular networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data traffic in cellular networks has dramatically increased in recent years as the emergence of various new wireless applications, which imposes an immediate requirement for large network capacity. Although many efforts have been made to enhance wireless channel capacity, they are far from solving the network capacity enhancement problem. Device-to-Device (D2D) communication is recently proposed as a promising technique to increase network capacity. However, most existing work on D2D communications focuses on optimizing throughput or energy efficiency, without considering economic issues. In this paper, we propose a truthful double auction for D2D communications (TAD) in multi-cell cellular networks for trading resources in frequencytime domain, where cellular users with D2D communication capability act as sellers, and other users waiting to access the network act as buyers. Both intra-cell and inter-cell D2D sellers are accommodated in TAD while the competitive space in each cell is extensively exploited to achieve a high auction efficiency. With a sophisticated seller-buyer matching, winner determination and pricing, TAD guarantees individual rationality, budget balance, and truthfulness. Furthermore, we extend our TAD design to handle a more general case that each seller and buyer ask/bid multiple resource units. Extensive simulation results show that TAD can achieve truthfulness as well as high performance in terms of seller/buyer sanctification ratio, auctioneer profit and network throughput.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-orthogonal multiple access (NOMA) is emerging as a promising multiple access technology for the fifth generation cellular networks to address the fast growing mobile data traffic. It applies superposition coding in transmitters, allowing simultaneous allocation of the same frequency resource to multiple intra-cell users. Successive interference cancellation is used at the receivers to cancel intra-cell interference. User pairing and power allocation (UPPA) is a key design aspect of NOMA. Existing UPPA algorithms are mainly based on exhaustive search method with extensive computation complexity, which can severely affect the NOMA performance. A fast proportional fairness (PF) scheduling based UPPA algorithm is proposed to address the problem. The novel idea is to form user pairs around the users with the highest PF metrics with pre-configured fixed power allocation. Systemlevel simulation results show that the proposed algorithm is significantly faster (seven times faster for the scenario with 20 users) with a negligible throughput loss than the existing exhaustive search algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Device-to-Device (D2D) communication is a recently emerged disruptive technology for enhancing the performance of current cellular systems. To successfully implement D2D communications underlaying cellular networks, resource allocation to D2D links is a critical issue, which is far from trivial due to the mutual interference between D2D users and cellular users. Most of the existing resource allocation research for D2D communications has primarily focused on the intracell scenario while leaving the intercell settings not considered. In this paper, we investigate the resource allocation issue for intercell scenarios where a D2D link is located in the overlapping area of two neighboring cells. Specifically, We present three intercell D2D scenarios regarding the resource allocation problem. To address the problem, we develop a repeated game model under these scenarios. Distinct from existing works, we characterize the communication infrastructure, namely Base Stations (BSs), as players competing resource allocation quota from D2D demand, and we define the utility of each player as the payoff from both cellular and D2D communications using radio resources. We also propose a resource allocation algorithm and protocol based on the Nash equilibrium derivations. Numerical results indicate that the developed model not only significantly enhances the system performance including sum rate and sum rate gain, but also sheds lights on resource configurations for intercell D2D scenarios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Realizing the promise of molecularly targeted inhibitors for cancer therapy will require a new level of knowledge about how a drug target is wired into the control circuitry of a complex cellular network. Here we review general homeostatic principles of cellular networks that enable the cell to be resilient in the face of molecular perturbations, while at the same time being sensitive to subtle input signals. Insights into such mechanisms may facilitate the development of combination therapies that take advantage of the cellular control circuitry, with the aim of achieving higher efficacy at a lower drug dosage and with a reduced probability of drug-resistance development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin’s lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis. Results Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL. Conclusions The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The papers in this special issue focus on the topic of location awareness for radio and networks. Localization-awareness using radio signals stands to revolutionize the fields of navigation and communication engineering. It can be utilized to great effect in the next generation of cellular networks, mining applications, health-care monitoring, transportation and intelligent highways, multi-robot applications, first responders operations, military applications, factory automation, building and environmental controls, cognitive wireless networks, commercial and social network applications, and smart spaces. A multitude of technologies can be used in location-aware radios and networks, including GNSS, RFID, cellular, UWB, WLAN, Bluetooth, cooperative localization, indoor GPS, device-free localization, IR, Radar, and UHF. The performances of these technologies are measured by their accuracy, precision, complexity, robustness, scalability, and cost. Given the many application scenarios across different disciplines, there is a clear need for a broad, up-to-date and cogent treatment of radio-based location awareness. This special issue aims to provide a comprehensive overview of the state-of-the-art in technology, regulation, and theory. It also presents a holistic view of research challenges and opportunities in the emerging areas of localization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A dynamic bandwidth reservation (DBR) scheme for hybrid IEEE 802.16 wireless networks is investigated, in which 802.16 networks serve as the backhaul for client networks, such as WiFi hotspots and cellular networks. The DBR scheme implemented in the subscription stations (SSs) (co-locating with access pointers) consists of two components: connection admission controller (CAC), and bandwidth controller (BC). The CAC processes the received connection set-up requests from the client networks connected to the SSs. The BC manages the request and release of bandwidth from the base station (BS). It dynamically changes the reserved bandwidth between a small number of values. Hysteresis is incorporated in bandwidth release to reduce bandwidth request signalling load and connection blocking probability. An analytical model is proposed to evaluate the performances of reserved bandwidth, connection blocking probability and signalling load. The impacts of hysteresis mechanism and probability of reservation request blocking are taken into account. Simulation verifies the analytical model. ©2008 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to design a preventive scheme using directional antennas to improve the performance of mobile ad hoc networks. In this dissertation, a novel Directionality based Preventive Link Maintenance (DPLM) Scheme is proposed to characterize the performance gain [JaY06a, JaY06b, JCY06] by extending the life of link. In order to maintain the link and take preventive action, signal strength of data packets is measured. Moreover, location information or angle of arrival information is collected during communication and saved in the table. When measured signal strength is below orientation threshold , an orientation warning is generated towards the previous hop node. Once orientation warning is received by previous hop (adjacent) node, it verifies the correctness of orientation warning with few hello pings and initiates high quality directional link (a link above the threshold) and immediately switches to it, avoiding a link break altogether. The location information is utilized to create a directional link by orienting neighboring nodes antennas towards each other. We call this operation an orientation handoff, which is similar to soft-handoff in cellular networks. ^ Signal strength is the indicating factor, which represents the health of the link and helps to predict the link failure. In other words, link breakage happens due to node movement and subsequently reducing signal strength of receiving packets. DPLM scheme helps ad hoc networks to avoid or postpone costly operation of route rediscovery in on-demand routing protocols by taking above-mentioned preventive action. ^ This dissertation advocates close but simple collaboration between the routing, medium access control and physical layers. In order to extend the link, the Dynamic Source Routing (DSR) and IEEE 802.11 MAC protocols were modified to use the ability of directional antennas to transmit over longer distance. A directional antenna module is implemented in OPNET simulator with two separate modes of operations: omnidirectional and directional. The antenna module has been incorporated in wireless node model and simulations are performed to characterize the performance improvement of mobile ad hoc networks. Extensive simulations have shown that without affecting the behavior of the routing protocol noticeably, aggregate throughput, packet delivery ratio, end-to-end delay (latency), routing overhead, number of data packets dropped, and number of path breaks are improved considerably. We have done the analysis of the results in different scenarios to evaluate that the use of directional antennas with proposed DPLM scheme has been found promising to improve the performance of mobile ad hoc networks. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, urban vehicular ad hoc networks (VANETs) are gaining importance for inter-vehicle communication, because they allow for the local communication between vehicles without any infrastructure, configuration effort, and without expensive cellular networks. But such architecture may increase the complexity of routing since there is no central control system in urban VANETs. Therefore, a challenging research task is to improve urban VANETs' routing efficiency. ^ Hence, in this dissertation we propose two location-based routing protocols and a location management protocol to facilitate location-based routing in urban VANETs. The Multi-hop Routing Protocol (MURU) is proposed to make use of predicted mobility and geometry map in urban VANETs to estimate a path's life time and set up robust end-to-end routing paths. The Light-weight Routing Protocol (LIRU) is proposed to take advantage of the node diversity under dynamic channel condition to exploit opportunistic forwarding to achieve efficient data delivery. A scalable location management protocol (MALM) is also proposed to support location-based routing protocols in urban VANETs. MALM uses high mobility in VANETs to help disseminate vehicles' historical location information, and a vehicle is able to implement Kalman-filter based predicted to predict another vehicle's current location based on its historical location information. ^