959 resultados para cell-free system
Resumo:
Fuel Cell is the emerging technology of cogeneration, and has been applied successfully in Japan, U.S.A. and some OECD countries. This system produces electric power by an electrolytic process, in which chemical substances (the most utilized substances are solid oxide, phosphoric acid and molten carbonate) absorb the components H-2 and O-2 of the combustion fuel. This technology allows the recovery of residual heat, available from 200 degrees C up to 1000 degrees C (depending on the electrochemical substance utilized), which can be used for the production of steam, hot or cold water, or hot or cold air, depending on the recuperation equipment used. This article presents some configurations of fuel cell cogeneration cycles and a study of the technical and economic feasibility for the installation of the cogeneration systems utilizing fuel cell, connected to an absorption refrigeration system for st building of the tertiary sector, subject to conditions in Brazil. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, a methodology for the study of a molten carbonate fuel cell cogeneration system and applied to a computer center building is developed. This system permits the recovery of waste heat, available between 600°C and 700°C, which can be used to the production of steam, hot and cold water, hot and cold air, depending on the recuperation equipment associated. Initially, some technical information about the most diffusing types of the fuel cell demonstration in the world are presented. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.
Resumo:
In indicating the microwave irradiation for disinfecting dentures it is necessary to see how this procedure influences Candida albicans integrity and viability. The aim of this study was to evaluate the ability of microwaves to inactivate C. albicans and damage cell membrane integrity. Two 200-ml C. albicans (ATCC 10231) suspensions were obtained. A sterile denture was placed in a beaker containing the Experimental (ES) or the Control suspension (CS). ES was microwaved at 650 W for 6 min. Suspensions were optically counted using methylene blue dye uptake as indicative of membrane-damaged cells; spread on Agar Sabouraud dextrose (ASD) for viability assay; or spectrophotometrically measured at 550 nm. Cell-free solutions were submitted to content analyses of protein (Bradford and Pyrogallol red methods); Ca++ (Cresolftaleine complexone method); DNA (spectrophotometer measurements at 260 nm) and K + (selective electrode technique). Data were analysed by Student's t- or Wilcoxon z-tests (α = 0.05). All ES cells demonstrated cell membrane damage. Viable cells were non-existent in the ES ASD plates. No significant difference in optical density between ES and CS was observed (P = 0.272). ES cells released significantly high protein (P < 0.001, Bradford; P = 0.005, Pyrogallol red), K+ (P < 0.001), Ca++ (P = 0.012) and DNA (P = 0.046) contents. Microwaves inactivated C. albicans and damaged cell membrane integrity. © 2007 The Authors.
Resumo:
Critical lower limb ischemia is a severe disease. A common approach is infrainguinal bypass. Synthetic vascular prosthesis, are good conduits in high-flow low-resistance conditions but have difficulty in their performance as small diameter vessel grafts. A new approach is the use of native decellularized vascular tissues. Cell-free vessels are expected to have improved biocompatibility when compared to synthetic and are optimal natural 3D matrix templates for driving stem cell growth and tissue assembly in vivo. Decellularization of tissues represent a promising field for regenerative medicine, with the aim to develop a methodology to obtain small-diameter allografts to be used as a natural scaffold suited for in vivo cell growth and pseudo-tissue assembly, eliminating failure caused from immune response activation. Material and methods. Umbilical cord-derived mesenchymal cells isolated from human umbilical cord tissue were expanded in advanced DMEM. Immunofluorescence and molecular characterization revealed a stem cell profile. A non-enzymatic protocol, that associate hypotonic shock and low-concentration ionic detergent, was used to decellularize vessel segments. Cells were seeded cell-free scaffolds using a compound of fibrin and thrombin and incubated in DMEM, after 4 days of static culture they were placed for 2 weeks in a flow-bioreactor, mimicking the cardiovascular pulsatile flow. After dynamic culture, samples were processed for histological, biochemical and ultrastructural analysis. Discussion. Histology showed that the dynamic culture cells initiate to penetrate the extracellular matrix scaffold and to produce components of the ECM, as collagen fibres. Sirius Red staining showed layers of immature collagen type III and ultrastructural analysis revealed 30 nm thick collagen fibres, presumably corresponding to the immature collagen. These data confirm the ability of cord-derived cells to adhere and penetrate a natural decellularized tissue and to start to assembly into new tissue. This achievement makes natural 3D matrix templates prospectively valuable candidates for clinical bypass procedures
Resumo:
Ribosome inactivating proteins (RIPs) are a family of plant proteins that depurinate the major rRNA, inhibiting the protein synthesis. RIPs are divided into type 1, single chain proteins with enzymatic activity, and type 2 RIPs (toxic and non-toxic), with the enzymatic chain linked to a binding chain. RIPs have been used alone or as toxic component of immunotoxins for experimental therapy of many diseases. The knowledge of cell death pathway(s) induced by RIPs could be useful for clarifying the mechanisms induced by RIPs and for designing specific immunotherapy. The topic of the current study was (i) the determination of the amino acid sequence of the type 2 RIP stenodactylin. The comparison with other RIPs showed that the A chain is related to other toxic type 2 RIPs. whereas the B chain is more related to the non-toxic type 2 RIPs. This latter result is surprising because stenodactylin is actually the most toxic type 2 RIP known; (ii) the study of the cell death mechanisms induced by stenodactylin in human neuroblastoma cells (NB100). High doses of stenodactylin can activate the effector caspases (perhaps through the DNA damage and/or intrinsic/extrinsic pathways) and also cause ROS generation. Low doses cause a caspase-dependent apoptosis, mainly via extrinsic pathway. Moreover, the activation of caspases precedes the inhibition of protein synthesis; (iii) the investigation of the cell death pathway induced by the non-toxic type 2 RIPs ebulin l and nigrin b. These RIPs demonstrated high enzymatic activity in a cell-free system, but they lack high cytotoxicity. These preliminary studies demonstrate that the cell death mechanism induced by the two non-toxic RIPs is partially caspase-dependent apoptosis, but other mechanisms seem to be involved
Resumo:
Focal osteochondral defects are still a challenging problem in joint surgery. We have developed a two-layered implant consisting of a basal porous beta-tricalcium phosphate (TCP) for bone reconstruction and a superficial fibrous collagen type I/III layer for cartilage regeneration. Fifty-four osteochondral defects in the trochlear groove of 27 Göttinger Minipigs were created and either left untreated, treated with the implant alone, or the implant augmented with an additional growth factor mixture, which was assumed to stimulate cell and tissue differentiation. Follow-up was 6, 12 and 52 weeks with n=6 for each group. The repair tissue was evaluated for its gross appearance and biomechanical properties. Histological sections were semi-quantitatively scored for their histomorphological structure. Treatment with the two-layered implant improved defect filling and subchondral bone repair at 6 and 12 weeks follow-up. The TCP was replaced by cancellous bone at 52 weeks. Cartilage repair tissue mainly consisted of fibrocartilage and showed a moderate cell density up to the joint surface. Growth factor treatment improved the mechanical and histomorphological properties of the cartilage repair tissue at 12, but not at 52 weeks postoperatively. In conclusion, the two-layered collagen-TCP implant augmented with chondroinductive growth factors seems a promising new option for the treatment of deep osteochondral defects in joint surgery.
Resumo:
BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Resumo:
The plasticity and self-regenerative properties of stem cells have opened new avenues in regenerative medicine. Greater understanding of the biology of stem cells is followed by growing expectations of a rapid translation into alternative therapeutic options. Recent preclinical studies and clinical trials employing stem and progenitor cells from different sources have shown encouraging results. However, their underlying mechanisms are still poorly understood, the potential adverse effects and the discrepancy in efficacy remain to be further investigated. Their essential role in vessel regeneration has made endothelial progenitor cells (EPC) a suitable candidate for therapeutic applications aiming at tissue revascularisation. Recent evidence suggests that EPC contribute to neovascularisation not only by direct participation in tissue homeostasis but mainly via paracrine mechanisms. In future, novel therapeutic strategies could be based on EPC paracrine factors or synthetic factors, and replace cell transplantation.
Resumo:
Human sperm centrosome reconstitution and the parental contributions to the zygotic centrosome are examined in mammalian zygotes and after exposure of spermatozoa to Xenopus laevis cell-free extracts. The presence and inheritance of the conserved centrosomal constituents γ-tubulin, centrin, and MPM-2 (which detects phosphorylated epitopes) are traced, as is the sperm microtubule-nucleating capability on reconstituted centrosomes. γ-Tubulin is biparentally inherited in humans (maternal >> than paternal): Western blots detect the presence of paternal γ-tubulin. Recruitment of maternal γ-tubulin to the sperm centrosome occurs after sperm incorporation in vivo or exposure to cell-free extract, especially after sperm “priming” induced by disulfide bond reduction. Centrin is found in the proximal sperm centrosomal region, demonstrates expected calcium sensitivity, but appears absent from the zygotic centrosome after sperm incorporation or exposure to extracts. Sperm centrosome phosphorylation is detected after exposure of primed sperm to egg extracts as well as during the early stages of sperm incorporation after fertilization. Finally, centrosome reconstitution in cell-free extracts permits sperm aster microtubule assembly in vitro. Collectively, these results support a model of a blended zygotic centrosome composed of maternal constituents attracted to an introduced paternal template after insemination.