971 resultados para cell strain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Listeria (L.) monocytogenes is an environmental bacterium that may become an intracellular pathogen upon ingestion to cause gastroenteritis, septicaemia, abortions, and/or fatal infections of the central nervous system. We here describe a L. monocytogenes field strain (JF5171) isolated from a bovine placenta in the context of abortion, which exhibited attenuation in bovine brain-slice cultures. The whole genome of strain JF5171 was sequenced, and the invasion, replication, and intercellular spread of JF5171 were further analyzed by quantification of colony forming units and immunofluorescence studies. Phospholipase and hemolysis activity of JF5171 were also quantified along with transcription levels of actA, hly and prfA. The data obtained were compared to those of the widely used L. monocytogenes reference strain, EGD-e. JF5171 exhibited reduced replication and lower levels of phospholipase and hemolysis activity. Invasion and cell-to-cell spread was strongly decreased compared to EGD-e, and actin polymerization was absent. A frame shift deletion was identified in the JF5171 coding region of the major regulator for virulence, prfA. This resulted in a truncated C-terminus sequence (WEN* vs. WGKLN*). In addition, a point mutation resulted in a lysine to arginine substitution at amino acid position 197. Complementation with prfA from EGD-e and with (EGD-e) prfA-K197N increased the replication and spread efficiency of JF5171. In contrast, complementation with the truncated version of prfA had no effect. Taken together, these results suggest that the truncated C-terminus of prfA considerably contributes to the strongly attenuated phenotype observed in vitro.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Naturally occurring genetic variants confer susceptibility to disease in the human population, including in testicular germ cell tumor development. Disease susceptibility loci for testicular germ cell tumors have been identified by genetic mapping in humans and mice. However, the identity of many of the susceptibility genes remains unclear. My study utilized a chromosome substitution strain, the 129.MOLF-Chr 19 (or M19 strain), to identify candidate testicular germ cell tumor susceptibility genes. Males of this strain have a high incidence of germ cell tumors in the testes. By forward genetic approaches, five susceptibility loci were fine-mapped and the genetic interactions were dissected. In addition, I identified three protein-coding genes and one micro-RNA as testicular tumor susceptibility genes by genomic screening. Using reverse genetic approaches, I verified one of the candidates, Splicing factor 1, as a modifier of testicular tumor. Deficiency of SF1 significantly reduces the incidence of testicular tumors in mice. This study highlights the advantage of the 129.MOLF-Chr 19 consomic strain in disease gene identification and validation. It also sets the stage to elucidate the molecular mechanisms of tumorigenesis in the testis. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Repeated titrations of strains of Newcastle disease virus (NDV) are more conveniently undertaken in cell cultures rather than in embryonated eggs. This is relatively easy with mesogenic and velogenic strains that are cytopathic to various cell lines, but is difficult with avirulent Australian isolates that are poorly cytopathic. Strain V4 for example has been shown to be pathogenic iin vitro only to of chicken embryo liver cells. Strain 1-2 was reported to produce cytopathic effect (CPE) on chicken embryo kidney (CEK) cells. The present studies confirmed this observation and developed a quantal assay. CEK cells infected with strain 1-2 developed CPE characterized by degeneration, rounding, granularity and vacuolation, and the formation of synctia. End points were readily established by microscopic examination of fixed and stained cells. In virus infectivity studies on strain 1-2, where multiple titrations are required and where large numbers of samples are used, titration using CEK cell grown in microtitre plates is recommended. Such studies may not be feasible in embryonated eggs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. RESULTS: Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. CONCLUSIONS: The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous studies have described alterations in gene expression following spinal cord injury, but this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile strain on cultured spinal cord cells from E15 Sprague-Dawley rats. Microarray analysis of gene expression and categorization of identified genes were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) systems. The application of cyclic tensile strain reduced the viability of cultured spinal cord cells significantly in a dose- and time-dependent manner. GO analysis identified candidate genes related to apoptosis (44) and to response to stimulus (17). KEGG analysis identified changes in the expression levels of 12 genes of the mitogen-activated protein kinase (MAPK) signaling pathway, which were confirmed to be upregulated and validated by RT-PCR analysis. Spinal cord cells undergo cell death in response to cyclic tensile strain, which were dose- and time-dependent, with upregulation of various genes, in particular of the MAPK pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration. Because these effects seem contradictory, we aimed to determine whether a range of mechanical stimuli exists in which angiogenesis is favoured. A series of cyclic strain magnitudes were applied to a Matrigel-based “tube formation” assay and the total lengths of networks formed by human microvascular endothelial cells measured at 24 h. Network lengths were reduced at all strain levels, compared to unstretched controls. However, the levels of pro-angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were unchanged by strain, and vascular endothelial growth factor was uniformly elevated in stretched conditions. By repeating the assay with the addition of conditioned media from mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to increase network lengths, but not to alter the negative effect of cyclic stretching. Together, these results demonstrate that directly applied periodic strains can inhibit endothelial organisation in vitro, and suggest that this may be due to physical disruption rather than biochemical modulation. Most importantly, the results indicate that the straining of endothelial cells and their assembly into vascular-like structures must be studied simultaneously to adequately characterise the mechanical influence on vessel formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells. The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain. The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While both the restoration of the blood supply and an appropriate local mechanical environment are critical for uneventful bone healing, their influence on each other remains unclear. Human bone fracture haematomas (<72h post-trauma) were cultivated for 3 days in fibrin matrices, with or without cyclic compression. Conditioned medium from these cultures enhanced the formation of vessel-like networks by HMEC-1 cells, and mechanical loading further elevated it, without affecting the cells’ metabolic activity. While haematomas released the angiogenesis-regulators, VEGF and TGF-β1, their concentrations were not affected by mechanical loading. However, direct cyclic stretching of the HMEC-1 cells decreased network formation. The appearance of the networks and a trend towards elevated VEGF under strain suggested physical disruption rather than biochemical modulation as the responsible mechanism. Thus, early fracture haematomas and their mechanical loading increase the paracrine stimulation of endothelial organisation in vitro, but direct periodic strains may disrupt or impair vessel assembly in otherwise favourable conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.