984 resultados para casting aluminium alloys molybdenum heat treatment mechanical properties microstructure high temperature exposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal combination of the mechanical characteristics of austempered spheroidal graphitic cast steel together with modern casting techniques yielded an economically promising product. The maximum potential of the usage of these steels is related to fabrication and characterization techniques, among which, one of the most important is the cooling diagram (TTT curve). In this work, 3 heats of graphitic steels with the following nominal compositions were cast: 1.0 % C, 2.3 % Si, 0.4 % Mn, and with niobium contents of. 0.0 %, 0.5 % and 1.0 %. TTT curves were determined by dilatometric testing and test specimens of these steels were austempered. The samples were then characterized by hardness testing and optical and SEM microscopy. Tensile, impact (no notch) and wear testing were also performed. The addition of niobium produced significant alterations in the TTT diagrams. Increasing niobium content moves the pearlite transformation nose to the right and the bainitic transformation nose to the left. Tensile strength of these alloys was high, in the range of 1700 MPa and impact values were around of 45 Joules for alloy with 1 % Nb, 49 Joules for alloy with 0.5 % Nb and fracture did not occur for the alloy without the addition of Nb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructures, mechanical properties, corrosion behaviour and biocompatibility of the Mg-Zr-Ca alloys have been investigated for potential use in orthopaedic applications. The microstructures of the alloys were examined using X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The mechanical properties of Mg-Zr-Ca alloys were determined from compressive tests. The corrosion behaviour has been investigated using an immersion test and electrochemical measurement. The biocompatibility was evaluated by cell growth factor using osteoblast-like SaOS2 cell. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys exhibit much finer microstructures than the as-cast Mg-Zr-Ca alloys which show coarse microstructures. The compressive strength of the hot-rolled alloys is much higher than that of the as-cast alloys and the human bone, which would offer appropriate mechanical properties for orthopaedic applications. The corrosion resistance of the alloys can be enhanced significantly by hot-rolling process. Hot-rolled Mg-0.5Zr-1Ca alloy (wt %) exhibits the lowest corrosion rate among all alloys studied in this paper. The hot-rolled Mg-0.5Zr-1Ca and Mg-1Zr-1Ca alloys exhibit better biocompatibility than other studied alloys and possess advanced mechanical properties, corrosion resistance and biocompatibility, suggesting that they have a great potential to be good candidates for orthopaedic applications. © 2012 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the AlxCoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA[U+05F3]s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New titanium alloys have been developed with the aim of utilizing materials with better properties for application as biomaterials, and Ti-Zr system alloys are among the more promising of these. In this paper, the influence of zirconium concentrations on the structure, microstructure, and selected mechanical properties of Ti-Zr alloys is analyzed. After melting and swaging, the samples were characterized through chemical analysis, density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, and elasticity modulus. In-vitro cytotoxicity tests were performed on cultured osteogenic cells. The results showed the formation essentially of the α′ phase (with hcp structure) and microhardness values greater than cp-Ti. The elasticity modulus of the alloys was sensitive to the zirconium concentrations while remaining within the range of values of conventional titanium alloys. The alloys presented no cytotoxic effects on osteoblastic cells in the studied conditions. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on the aging hardening behavior of four Al-Li-Zn-Mg-Cu alloys were carried out using differential scanning calorimetry, transmission electron microscopy and hardness measurement. It is shown that the addition of Li inhibits the formation of Zn-rich G.P. zones in Al-Zn-Mg-Cu alloys. The dominant aging hardening precipitates is delta'(Al3Li) phase. Coarse T ((AlZn)(49)Mg-32) phase, instead of MgZn2, precipitates primarily on grain boundaries, and provides little strengthening. The multi-stop aging involving plastic deformation introduces in the matrix a high concentration of structural defects. These defects play different role on the nucleation of Zn-rich G.P. zones in different alloys. For the Li free alloy, structural defects act as vacancy sinks and tend to suppress the homogeneous precipitation of G.P. zones, while for the Li containing alloys, these defects promote the heterogeneous nucleation of G.P. zones and metastable MgZn2. A significant aging hardening effect is attained in deformed Li containing alloys due to the extra precipitation of fine MgZn2 in the matrix combined with deformation hardening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper follows previous X-ray diffraction work on crystallisation and phase transformation of electroless nickel–phosphorus deposits, concentrating on microstructural changes. Amorphous or nanocrystalline coatings, depending on their phosphorus content, were heat treated at temperatures between 100 and 500 °C for 1 h. Changes in microstructure after the heat treatment were examined using high-resolution field emission scanning electron microscope. Crystallisation and grain growth effects are observed, as well as some inherent defect structures in the coatings and their changes. These are compared with the previous X-ray diffraction work and in general, good agreement is observed. The complementary strength and weakness of the different characterisation techniques are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. Little data are available regarding the effect of heat-treatments on the dimensional stability of hard chairside reline resins. Purpose. The objective of this in vitro study was to evaluate whether a heat-treatment improves the dimensional stability of the reline resin Duraliner II and to compare the linear dimensional changes of this material with the heat-polymerized acrylic resin Lucitone 550. Material and methods. The materials were mixed according to the manufacturer's instructions and packed into a stainless steel split mold (50.0 mm diameter and 0.5 mm thickness) with reference points (A, B, C, and D). Duraliner II specimens were polymerized for 12 minutes in water at 37°C and bench cooled to room temperature before being removed from the mold. Twelve specimens were made and divided into 2 groups: group 1 specimens (n=6) were left untreated, and group 2 specimens (n=6) were submitted to a heat-treatment in a water bath at 55°C for 10 minutes and then bench cooled to room temperature. The 6 Lucitone specimens (control group) were polymerized in a water bath for 9 hours at 71°C. The specimens were removed after the mold reached the room temperature. A Nikon optical comparator was used to measure the distances between the reference points (AB and CD) on the stainless steel mold (baseline readings) and on the specimens to the nearest 0.001 mm. Measurements were made after processing and after the specimens had been stored in distilled water at 37°C for 8 different periods of time. Data were subjected to analysis of variance with repeated measures, followed by Tukey's multiple comparison test (P<.05). Results. All specimens exhibited shrinkage after processing (control, -0.41%; group 1, -0.26%; and group 2, -0.51%). Group 1 specimens showed greater shrinkage (-1.23%) than the control (-0.23%) and group 2 (-0.81%) specimens after 60 days of storage in water (P<.05). Conclusion. Within the limitations of this study, a significant improvement of the long-term dimensional stability of the Duraliner II reline resin was observed when the specimens were heat-treated. However, the shrinkage remained considerably higher than the denture base resin Lucitone 550. Copyright © 2002 by The Editorial Council of The Journal of Prosthetic Dentistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O aço inoxidável martensítico ASTM A743 CA6NM é utilizado para produzir componentes especiais para turbinas hidráulicas, devido às suas boas propriedades mecânicas combinadas com alta resistência à corrosão e cavitação e uma boa soldabilidade. As turbinas hidráulicas são produzidas por meio de múltiplos passes de solda em peças espessas obtidas por fundição. Durante a operação, estes componentes estão sujeitos à erosão por cavitação e trincas em regiões tensionadas, que são reparados também por meio de soldagem. Após o processo de soldagem, um tratamento térmico pós-soldagem é comumente utilizado para aliviar as tensões residuais. Porém, existem dificuldades significativas para a realização de tratamento térmico nas turbinas hidráulicas, tais como a complexidade da geometria de solda, a possibilidade de distorção no caso de quaisquer cargas mecânicas, dificuldade em aquecer simetricamente, e também o tratamento térmico pode causar degradação das propriedades do material. Assim, existe um grande interesse no desenvolvimento de procedimentos de soldagem que elevem a tenacidade ao impacto e evitem o tratamento térmico pós-soldagem. Neste trabalho, a aplicação de vibrações mecânicas durante e após a soldagem para aliviar tensões residuais foram avaliadas em juntas de aço inoxidável martensítico CA6NM soldadas pelo processo Flux Cored Arc Welding (FCAW). A utilização de vibrações mecânicas para reduzir e redistribuir as tensões residuais das estruturas soldadas através da aplicação de carga vibratória pode gerar muitos benefícios. Testes de impacto Charpy (-20 °C), ensaios de tração e dobramento foram realizados conforme ASME IX, e perfis de microdureza nas diferentes regiões da solda foram conduzidos para a caracterização mecânica das juntas soldadas. A caracterização microestrutural foi realizada utilizando difração de raios X, microscopia óptica e microscopia eletrônica de varredura (MEV). Os resultados de propriedades mecânicas das amostras vibradas atenderam as exigências especificadas por norma, na qual o processo com tratamento térmico é recomendado para a soldagem deste tipo de aço, visando atingir os níveis de tenacidade do material original. Com relação à microestrutura não foram observados alterações significativas para as amostras vibradas em comparação com a condição \"como soldado\", porém para a condição com tratamento térmico pós-soldagem foi observado uma pequena quantidade de austenita retida, que são precipitadas após o tratamento térmico e permanecem finamente distribuídas após o resfriamento e auxiliam no ganho de tenacidade das juntas soldadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cu-based bulk metallic glass matrix composites (BMGMCs) containing in-situ TiC particles were fabricated successfully. The yield and fracture strength increased from 1930 MPa, 2250 MPa to 2210 MPa, 2500 MPa, respectively. The ductility was improved and the hardness was also enhanced by 25%. The fracture mechanism was investigated in detail. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.