922 resultados para carbon supported PtSn catalysts


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Pd-P (Pd-P/C) catalyst for the anodic catalyst in the direct formic acid fuel cell (DFAFC) can be prepared. The Pd-P/C catalyst shows that its electrocatalytic activity and especially its stability for the oxidation of formic acid are much higher than that of a Pd/C catalyst. Therefore, the Pd-P/C catalyst may have practical applications in DFAFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heteropolyacids (HPAs) possess both acidic and redox catalytic properties and held extensive promise of practical application. These type of compound display a great potential of specific synthesis reactions for replacing sulfuric acid to satisfy the requirements of environmental protection. Heterogenizing HPAs would not only make them more useful in liquid phase oxidation with oxygen and in acid-catalyzed reaction, as the catalyst is often difficult to separate from the reaction products, but also create favorable factors for realizing heterogenization of homogeneous reaction and even utilizing new technology of catalytic distillation. In this paper, different kinds of porous materials which are well characterized, including oxides such as Al2O3, SiO2, TiO2, diatomite, bentonite, and active carbon of different sources, were used as support for heterogenizing HPAs (in different media), and the obtained results, the intrinsic characters of supports which may influence both the nature of the interaction between HPAs and supports in the heterogenization and the activity in the catalytic reaction, are explored. It is expected that these can provide a referential model for preparing supported acid catalyst used in liquid phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface structures of Pt-Sn and Pt-Fe bimetallic catalysts have been investigated by means of Mossbauer spectroscopy, Pt-L-III -edge EXAFS and H-2-adsorption. The results showed that the second component, such as Sn or Fe, remained in the oxidative state and dispersed on the gamma-Al2O3 surface after reduction, while Pt was completely reduced to the metallic state and dispersed on either the metal oxide surface or the gamma-Al2O3 surface. By correlating the distribution of Pt species on different surfaces with the reaction and adsorption performances, it is proposed that two kinds of active Pt species existed on the surfaces of both catalysts, named M-1 sites and M-2 sites. M-1 sites are the sites in which Pr directly anchored on the gamma-Al2O3 surface, while M-2 sites are those in which Pt anchored on the metal oxide surface. M-1 sites are favorable for low temperature H-2 adsorption, and responsible for the hydrogenolysis reaction and carbon deposition, while M-2 sites which adsorb more H-2 at higher temperature, are more resistant to the deactivation due to less carbon deposition, and provide major contribution to the dehydrogenation reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid phase hydrodechlorination of chlorobenzene was studied over Ni/active carbon (Ni/AC), Ni/gamma-Al2O3, Ni/SiO2 and Raney Ni. The complete hydrodechlorination of chlorobenzene was realized at 333-343 K on Ni/AC under hydrogen atmosphere of 1.0 MPa in the presence of alkaline hydroxide. Aryl halides, three chlorotoluenes (o-, m- and p-), three chloroanilines, three chlorobenzotrifluorides, three dichlorobenzenes and two trichlorobenzenes (1,2,3- and 1,2,4-) were also completely hydrodechlorinated under the similar conditions. Chlorobenzene derivatives having either an electron-donating group or an electron-withdrawing group decreased their reactivities with respect to the unsubstituted chlorobenzene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon supported PtSn alloy and PtSnOx particles with nominal Pt:Sn ratios of 3:1 were prepared by a modified polyol method. High resolution transmission electron microscopy (HRTEM) and X-ray microchemical analysis were used to characterize the composition, size, distribution, and morphology of PtSn particles. The particles are predominantly single nanocrystals with diameters in the order of 2.0-3.0 nm. According to the XRD results, the lattice constant of Pt in the PtSn alloy is dilated due to Sn atoms penetrating into the Pt crystalline lattice. While for PtSnOx nanoparticles, the lattice constant of Pt only changed a little. HRTEM micrograph of PtSnOx clearly shows that the change of the spacing of Pt (111) plane is neglectable, meanwhile, SnO2 nanoparticles, characterized with the nominal 0.264 nm spacing of SnO2 (10 1) plane, were found in the vicinity of Pt particles. In contrast, the HRTEM micrograph of PtSn alloy shows that the spacing of Pt (111) plane extends to 0.234 nm from the original 0.226 nm. High resolution energy dispersive X-ray spectroscopy (HR-EDS) analyses show that all investigated particles in the two PtSn catalysts represent uniform Pt/Sn compositions very close to the nominal one. Cyclic voltammograms (CV) in sulfuric acid show that the hydrogen ad/desorption was inhibited on the surface of PtSn alloy compared to that on the surface of the PtSnOx catalyst. PtSnOx catalyst showed higher catalytic activity for ethanol electro-oxidation than PtSn alloy from the results of chronoamperometry (CA) analysis and the performance of direct ethanol fuel cells (DEFCs). It is deduced that the unchanged lattice parameter of Pt in the PtSnOx catalyst is favorable to ethanol adsorption and meanwhile, tin oxide in the vicinity of Pt nanoparticles could offer oxygen species conveniently to remove the CO-like species of ethanolic residues to free Pt active sites. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The best of both worlds: The synthesis of carbon-encapsulated iron-based magnetic nanoparticles is described. With such small catalysts that have macroscopic magnetic properties, the advantages of homogeneous or colloidal and heterogeneous catalysts can be combined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen reduction reaction (ORR) was investigated on carbon-supported Pt-Co nanoparticle electrocatalysts with low Pt content in alkaline electrolyte. High resolution transmission electron microscopy, In situ X-ray absorption spectroscopy, and X-ray diffraction analysis evidenced large structural differences of the Pt-Co particles depending oil the route of the catalyst synthesis. It was demonstrated that although the Pt-Co materials contain low amounts of Pt, they show very good activities when the particles are formed by a Pt-rich shell and a Pt-Co core, which was obtained after submitting the electrocatalyst to a potential cycling in acid electrolyte. The high activity of this material was due to a major contribution from its higher surface area, as a result of the leaching of the Co atoms from the particle Surface. Furthermore, its high activity was ascribed to a minor contribution from the electronic interaction of the Pt atoms, at the particle surface, and the Co atoms located in the beneath layer, lowering the Pt cl-band center. As these electrocatalysts presented high activity for the ORR with low Pt content, the cost of the fuel cell cathodes could be lowered considerably. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt monolayers deposited on carbon- supported Ru and Rh nanoparticles were investigated as electrocatalysts for ethanol oxidation. Electronic features of the Pt monolayers were studied by in situ XANES (X-ray absorption near-edge structure). The electrochemical activity was investigated by cyclic voltammetry and cronoamperometric experiments. Spectroscopic and electrochemical results were compared to those obtained on carbon-supported Pt-Ru and Pt-Rh alloys, and Pt E-TEK. XAS results indicate a modification of the Pt 5d band due to geometric and electronic interactions with the Ru ant Rh substrates, but the effect of withdrawing electrons from Pt is less pronounced in relation to that for the corresponding alloys. Electrochemical stripping of adsorbed CO, which is one of the intermediates, and the currents for the oxidation of ethanol show faster kinetics on the Pt monolayer deposited on Ru nanoparticles, and an activity that exceeds that of conventional catalysts with much larger amounts of platinum. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report a simple and environmentally friendly synthesis of silver nanoparticles (AgNps) and their activities towards the oxygen reduction reaction (ORR). Ultraviolet spectroscopy (UV-vis) and transmission electron microscopy confirmed the formation of poly(vinyl pyrrolidone)-protected colloidal AgNps through direct reduction of Ag+ by glycerol in alkaline medium at room temperature. For the ORR tests, the AgNps were directly produced onto carbon to yield the Ag/C catalyst. Levich plots revealed the process to occur via 2.7 electrons, suggesting that the carbon support contributes to the ORR. We discuss here possibilities of improving the catalytic properties of the Ag/C for ORR by optimizing the parameters of the synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low temperature water–gas shift (WGS) reaction has been studied over carbon-supported nickel catalysts promoted by ceria. To this end, cerium oxide has been dispersed (at different loadings: 10, 20, 30 and 40 wt.%) on the activated carbon surface with the aim of obtaining small ceria particles and a highly available surface area. Furthermore, carbon- and ceria-supported nickel catalysts have also been studied as references. A combination of N2 adsorption analysis, powder X-ray diffraction, temperature-programmed reduction with H2, X-ray photoelectron spectroscopy and TEM analysis were used to characterize the Ni–CeO2 interactions and the CeO2 dispersion over the activated carbon support. Catalysts were tested in the low temperature WGS reaction with two different feed gas mixtures: the idealized one (with only CO and H2O) and a slightly harder one (with CO, CO2, H2, and H2O). The obtained results show that there is a clear effect of the ceria loading on the catalytic activity. In both cases, catalysts with 20 and 10 wt.% CeO2 were the most active materials at low temperature. On the other hand, Ni/C shows a lower activity, this assessing the determinant role of ceria in this reaction. Methane, a product of side reactions, was observed in very low amounts, when CO2 and H2 were included in the WGS feed. Nevertheless, our data indicate that the methanation process is mainly due to CO2, and no CO consumption via methanation takes place at the relevant WGS temperatures. Finally, a stability test was carried out, obtaining CO conversions greater than 40% after 150 h of reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.