996 resultados para carbon and nitrogen cycling
Resumo:
Long term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on coastal biogeochemistry. The present study sought to increase understanding of the coastal marine system of South Florida under modern conditions and through the anthropogenic changes in the last century, on scales ranging from individual nutrient cycle processes to seasonal patterns in organic material (OM) under varying hydrodynamic regime, to century scale analysis of sedimentary records. In all applications, carbon and nitrogen stable isotopic compositions of OM were examined as natural recorders of change and nutrient cycling in the coastal system. High spatial and temporal variability in stable isotopic compositions were observed on all time scales. During a transient phytoplankton bloom, ä15N values suggested nitrogen fixation as a nutrient source supporting enhanced productivity. Seasonally, particulate organic material (POM) from ten sites along the Florida Reef Tract and in Florida Bay demonstrated variable fluctuations dependent on hydrodynamic setting. Three separate intra-annual patterns were observed, yet statistical differences were observed between groupings of Florida Bay and Atlantic Ocean sites. The POM ä15N values ranged on a quarterly basis by 7‰, while ä13C varied by 22‰. From a sediment history perspective, four cores collected from Florida Bay further demonstrated the spatial and temporal variability of the system in isotopic composition of bulk OM over time. Source inputs of OM varied with location, with terrestrial inputs dominating proximal to Everglades freshwater discharge, seagrasses dominating in open estuary cores, and a marine mixture of phytoplankton and seagrass in a core from the boundary zone between Florida Bay and the Gulf of Mexico. Significant shifts in OM geochemistry were observed coincident with anthropogenic events of the 20th century, including railroad and road construction in the Florida Keys and Everglades, and also the extensive drainage changes in Everglades hydrology. The sediment record also preserved evidence of the major hurricanes of the last century, with excursions in geochemical composition coincident with Category 4-5 storms.
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.
Resumo:
Parthenium hysterophorus L. (Asteraceae) is a weed of national significance in Australia. Among the several arthropod agents introduced into Australia to control populations of P. hysterophorus biologically, Epiblema strenuana Walker (Lepidoptera: Tortricidae) is the most widespread and abundant agent. By intercepting the normal transport mechanisms of P. hysterophorus, the larvae of E. strenuana drain nutrients, other metabolic products, and energy, and place the host plant under intense metabolic stress. In this study, determinations of total non-structural carbohydrates (TNC) levels and carbon and nitrogen isotope ratios of fixed products in different parts of the plant tissue, including the gall, have been made to establish the function of gall as a sink for the nutrients. Values of δ13C and δ15N in galls were significantly different than those in proximal and distal stems, whereas the TNC levels were insignificant, when measured in the total population of P. hysterophorus, regardless of plant age. However, carbon, nitrogen, and TNC signatures presented significant results, when assayed in different developmental stages of P. hysterophorus. Carbon isotope ratios in galls were consistently more negative than those from the compared plant organs. Nitrogen isotope ratios in galls, on the contrary, were either similar to or less negative than the compared plant organs, especially within a single host-plant stage population (i.e., either rosette, preflowering, or flowering stage). TNC levels varied within compared plant populations. The stem distal to the gall functioned more efficiently as a nodal channel than the stem proximal to the gall, especially in the translocation of nitrogenous nutrients. Our findings indicate that the gall induced by E. strenuana functions as a sink for the assayed nutrients, although some variations have been observed in the patterns of nutrient mobilization. By creating a sink for the nutrients in the gall, E. strenuana is able to place the overall plant metabolism under stress, and this ability indicates E. strenuana has the necessary potential for use as a biological-control agent.
Resumo:
Increasing organic carbon inputs to agricultural soils through the use of pastures or crop residues has been suggested as a means of restoring soil organic carbon lost via anthropogenic activities, such as land use change. However, the decomposition and retention of different plant residues in soil, and how these processes are affected by soil properties and nitrogen fertiliser application, is not fully understood. We evaluated the rate and extent of decomposition of 13C-pulse labelled plant material in response to nitrogen addition in four pasture soils of varying physico-chemical characteristics. Microbial respiration of buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) residues was monitored over 365-days. A double exponential model fitted to the data suggested that microbial respiration occurred as an early rapid and a late slow stage. A weighted three-compartment mixing model estimated the decomposition of both soluble and insoluble plant 13C (mg C kg−1 soil). Total plant material decomposition followed the alkyl C: O-alkyl C ratio of plant material, as determined by solid-state 13C nuclear magnetic resonance spectroscopy. Urea-N addition increased the decomposition of insoluble plant 13C in some soils (≤0.1% total nitrogen) but not others (0.3% total nitrogen). Principal components regression analysis indicated that 26% of the variability of plant material decomposition was explained by soil physico-chemical characteristics (P = 0.001), which was primarily described by the C:N ratio. We conclude that plant species with increasing alkyl C: O-alkyl C ratio are better retained as soil organic matter, and that the C:N stoichiometry of soils determines whether N addition leads to increases in soil organic carbon stocks.
Resumo:
Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.
Resumo:
1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.
Resumo:
In this mini-review, I discuss some recent work on the stereochemistry and bonding of lone pairs of electrons in divalent compounds of the heavier carbon group elements (SnII, PbII) and in trivalent compounds of the heavier nitrogen group elements (BiIII). Recently developed methods that permit the real-space visualization of bonding patterns on the basis of density functional calculations of electronic structure, reveal details of the nature of s electron lone pairs in compounds of the heavier main group elements – their stereochemistry and their inertness (or lack thereof). An examination of tetragonal P4/nmm SnO, a-PbO and BiOF, and cubic Fm3m PbS provides a segue into perovskite phases of technological significance, including ferroelectric PbTiO3 and antiferroelectric/piezoelectric PbZrO3, in both of which the lone pairs on Pb atoms play a pivotal rôle.
Resumo:
Waterhyacinth (Eichhornia crassipes(Mart.) Solms), is a serious problem in the Sacramento Delta. Two weevil species (Neochetina bruchi Hustache and N. eichhorniae Warner) have been introduced as biological control agents. The purpose of this study was to test the hypothesis that nitrogen (N) in the tissue of waterhyacinth was not sufficient to support weevil growth and reproduction. Because it grows better on plants with high N content and because it has a greater impact on the growth of high N plants, N. bruchi may be a more effective biological control agent in the Sacramento Delta.
A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen
Resumo:
The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu-1, using a balloon-borne instrument at an atmospheric depth of ~5 g cm-2. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintilla tors used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from ~ 0.3 amu at boron to ~ 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere, the results are ^(10)B/B = 0.33^(+0.17)_(-0.11), ^(13)C/C = 0.06^(+0.13)_(-0.01), and ^(15)N/N = 0.42 (+0.19)_(-0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements.
Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis