939 resultados para capacidade antioxidante
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Seaweeds are organisms known to exhibit a variety of biomolecules with pharmacological properties. The coast of Rio Grande do Norte has over 100 species of seaweeds, most of them not yet explored for their pharmacological potential. Sugars and phenolic compounds are the most studied of these being assigned a range of biological properties, such as anticoagulant , antiinflammatory, antitumor and antioxidant activities. In this work, we obtained methanolic extracts from thirteen seaweeds of the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; D. mertensis; Sargassum filipendula; Spatoglossum schröederi; Acanthophora specifera; Botryocladia occidentalis; Caulerpa cupresoides; C. racemosa; C. prolifera; C. sertularioides e Codium isthmocladum). They were evaluated as anticoagulant and antioxidant drugs, as well as antiproliferative drugs against the tumor cell line HeLa. None of the methanolic extracts showed anticoagulant activity, but when they were evaluated as antioxidant drugs all of extracts showed antioxidant activity in all tests performed (total antioxidant capacity, sequestration of superoxide and hydroxyl radicals, ferric chelation and reductase activity), especially the algae D. mentrualis, D. cilliolata and C. prolifera, who had the greatest potential to donate electrons.In addition, the ability of iron ions chelation appears as the main antioxidant mechanism of the methanolic extracts of these seaweeds mainly for the extract of the C. racemosa seaweed, which reached almost 100% activity. In the MTT assay, all extracts showed inhibitory activity at different levels againts HeLa cells. Moreover, D. cilliolata (MEDC) and D. menstrualis (MEDM) extracts showed specific activity to this cell line, not inhibiting the viability of 3T3 normal cell line, so they were chosen for detailing the antiproliferative mechanism of action. Using flow cytometry, fluorescence microscopy and in vitro assays we demonstrated that MEDC and MEDM induced apoptosis in HeLa cells by activation of caspases 3 and 9 and yet, MEDC induces cell cycle arrest in S phase. Together, these results showed that the methanolic extracts of brown seaweed D. menstrualis and D. cilliolata may contain agents with potential use in combatting cells from human uterine adenocarcinoma. This study also points to the need for more in-depth research on phytochemical and biological context to enable the purification of biologically active products of these extracts
Resumo:
The antioxidant activity of aqueous extracts of five edible tropical fruits (Spondias lutea, Hancornia speciosa, Spondias purpurea, Manilkara zapota and Averrhoa carambola) was investigated using different methods. The amount of phenolic compounds was determined by the Folin-Ciocalteu reagent. The M. zapota had Total Antioxidant Capacity (TAC) higher than the other fruits. Extracts showed neither reducing power nor iron chelation (between 0.01 and 2.0 mg/mL). H. speciosa exhibited the highest superoxide scavenging activity (80%, 0.5 mg/mL). However, at high concentrations (8.0 mg/mL) only A. carambola, S. purpurea and S. lutea scavenging 100% of radicals formed. M. zapota and S. purpurea had higher phenolic compound levels and greater OH radical scavenging activity (92 %, 2.0 mg/mL). Antiproliferative activity was assessed with 3T3 fibroblasts and cervical tumor cells (HeLa). The most potent extract was S. purpurea (0.5 mg/mL), which inhibited HeLa cell proliferation by 52%. The most fruits showed antioxidant and antiproliferative properties, characterizing them as functional foods.
Resumo:
The main aim of this study was to compare the procedure for dehydration of Gracilaria birdiae prepared handmade and laboratory, collected in the northern coast of Rio Grande do Norte. The sample was collected in the Rio do Fogo beach in march 2009. The sample collected followed by two processing, the first the material prepared in laboratory was air-dried at 50°C for 24 hours in air-flow oven. The second the handmade sample was air-dried on the sun during three days. The extract was prepared in three different solvents: ethanol, hydroethanol and water, resulting in ethanol, hidroethanol and aqueous extracts from handmade and laboratory sample. In according with results only the ethanol extract was fractionated yielding the fractions hexane, dichloromethane and ethyl acetate fractions. The different process to obtain Gracilaria birdiae resulted in the samples with different shades. The soluble solids content was higher in the laboratory sample. The chemical composition the both samples were characterized by presenting a considerable amounts of carbohydrates, with amior percentage protein and ash, respectively, in the handmade and laboratory sample. In two samples showed a low content of lipids and the lipid profile showed a higher proportion of monounsaturated fatty acids, with the absence polyunsaturated handmade sample. The phytochemical screening by chemical reactions showed the presence of flavonoids, tannins, alkaloids and saponins the laboratory sample, presenting a greater diversity of bioactive compounds. Through of the analysis by thin layer chromatography was possible to identify the phytosterols β-sitosterol and stigmasterol the both samples, also suggest the presence of β-carotene and chlorophyll α the laboratory sample. The levels of total phenolics and flavonoids were more significant in the ethanol extract of the laboratory sample. The in vitro lethality showed that extracts of the laboratory sample and handmade from 125 to 500 μg/ mL, respectively, were highly lethal. In the evaluation of antioxidant capacity by the system β-carotene/ácido linoleic method and by DPPH radical scavernging assay, the ethanol extract from the laboratory process showed significantly greater activity than the other extracts, being and the first and second methods, respectively, lower and equivalent to the synthetic antioxidant BHT. The handmade ethanol extract has not demonstrated skill in deactivating free radicals, but showed activity in inhibiting lipid peroxidation, although the values were significantly lower than the laboratory sample. We conclude that the dehydration process in the laboratory is the most efficient technique to maintenance of the chemical composition present in the seaweed, providing beneficial properties such as antioxidant capacity. We emphasize that this property can be explored with the objective of adding commercial value to the final product, which will promote the expansion of production of this seaweed in the community of Rio do Fogo
Resumo:
Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers
Resumo:
The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Eryngium foetidum L., Eryngium cf. campestre and Coriandrum sativum L. are Apiaceae family vegetable appreciated due to its peculiar flavor and consumed mainly in the north and northeast of Brazil. The vegetables are rich in protein, vitamins, fiber, minerals, total phenolics and other essential bioactives for a balanced health. Nevertheless, many vegetables are falling into disuse by the population, instead of processed foods. The rescue consumption of these species is very important, aiming at their nutritional, therapeutic and antioxidant benefits. In this study, was quantified the levels of total phenolic, flavonoids and dihidroflavonoides by molecular absorption spectrophotometry in the ultraviolet. The total antioxidant capacity was also evaluated using five methodologies of in vitro assays: test Total Antioxidant Capacity (TAC), scavenging of DPPH and ABTS radical, Power Reducing and Power Chelating. It was also evaluated the power inhibitor of α-amylase and lipoxygenase extracts. All species showed significant levels of total phenolics, flavonoids and dihidroflavonoides in its composition. All treatments showed antioxidant activity of 50% except the sheets of E. cf. campestre, C. sativum and bracts of E. foetidum in DPPH and bracts of E. foetidum in ABTS. All treatments also exhibited 50% inhibition activity of the enzyme lipoxygenase.In α-amylase only the leaves of E. cf. campestre and C. sativum showed IC50. It was evaluate the phytochemical composition, aiming to meet the nutritional potential of Apiaceae family vegetables, called unconventional: Eryngium foetidum L., Eryngium cf. campestre; and conventional: Coriandrum sativum L. At the centesimal composition analysis Coriandrum sativum L. presented the highest levels of protein. The leaves of Eryngium foetidum L. exhibited higher values than other species in dietary fiber, while Eryngium cf. campestre detach with superior results in lipids. About the analyzed minerals, the leaves of Eryngium cf. campestre expressed results superior to the other in N, Ca, Mg, S and Cu. The amount of iron highlighted in sheets of E. foetidum, whereas P, K, Mn, Zn and B were most significant on leaves of C. sativum. It was concluded that the levels of total phenolic compounds found in these vegetables, characterize them for its high potential in the antioxidant and inhibition of lipoxygenase and α-amylase enzymes. Their protein and mineral levels classify them as species that can be used as a nutritional source in the preparation of other foods and may their regular consumption bring benefit to human health.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)