834 resultados para cameras
Resumo:
In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In preliminary experiments the performance of the resulting system is demonstrated with different real floorplans.
Resumo:
An approach for estimating 3D body pose from multiple, uncalibrated views is proposed. First, a mapping from image features to 2D body joint locations is computed using a statistical framework that yields a set of several body pose hypotheses. The concept of a "virtual camera" is introduced that makes this mapping invariant to translation, image-plane rotation, and scaling of the input. As a consequence, the calibration matrices (intrinsics) of the virtual cameras can be considered completely known, and their poses are known up to a single angular displacement parameter. Given pose hypotheses obtained in the multiple virtual camera views, the recovery of 3D body pose and camera relative orientations is formulated as a stochastic optimization problem. An Expectation-Maximization algorithm is derived that can obtain the locally most likely (self-consistent) combination of body pose hypotheses. Performance of the approach is evaluated with synthetic sequences as well as real video sequences of human motion.
Resumo:
A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.
Resumo:
Commercial capture fisheries produce huge quantities of offal, as well as undersized and unwanted catch in the form of discards. Declines in global catches and legislation to ban discarding will significantly reduce discards, but this subsidy supports a large scavenger community. Understanding the potential impact of declining discards for scavengers should feature in an eco-system based approach to fisheries management, but requires greater knowledge of scavenger/fishery interactions. Here we use bird-borne cameras, in tandem with GPS loggers, to provide a unique view of seabird/fishery interactions. 20,643 digital images (one min 21) from ten bird-borne cameras deployed on central place northern gannets Morus bassanus revealed that all birds photographed fishing vessels. These were large (>15 m) boats, with no small-scale vessels. Virtually all vessels were trawlers, and gannets were almost always accompanied by other scavenging birds. All individuals exhibited an Area-Restricted Search (ARS) during foraging, but only 42% of ARS were associated with fishing vessels, indicating much 'natural' foraging. The proportion of ARS behaviours associated with fishing boats were higher for males (81%) than females (30%), although the reasons for this are currently unclear. Our study illustrates that fisheries form a very important component of the prey-landscape for foraging gannets and that a discard ban, such as that proposed under reforms of the EU Common Fisheries Policy, may have a significant impact on gannet behaviour, particularly males. However, a continued reliance on 'natural' foraging suggests the ability to switch away from scavenging, but only if there is sufficient food to meet their needs in the absence of a discard subsidy.
Resumo:
The SuperWASP cameras are wide-field imaging systems at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and at the Sutherland Station of the South African Astronomical Observatory. Each instrument has a field of view of some 482 deg2 with an angular scale of 13.7" pixel-1, and is capable of delivering photometry with accuracy better than 1% for objects having V~7.0-11.5. Lower quality data for objects brighter than V~15.0 are stored in the project archive. The systems, while designed to monitor fields with high cadence, are capable of surveying the entire visible sky every 40 minutes. Depending on the observational strategy, the data rate can be up to 100 Gbytes per night. We have produced a robust, largely automatic reduction pipeline and advanced archive, which are used to serve the data products to the consortium members. The main science aim of these systems is to search for bright transiting exoplanet systems suitable for spectroscopic follow-up observations. The first 6 month season of SuperWASP-North observations produced light curves of ~6.7 million objects with 12.9 billion data points.
Resumo:
The development of a compact gamma camera with high spatial resolution is of great interest in Nuclear Medicine as a means to increase the sensitivity of scintigraphy exams and thus allow the early detection of small tumours. Following the introduction of the wavelength-shifting fibre (WSF) gamma camera by Soares et al. and evolution of photodiodes into highly sensitive silicon photomultipliers (SiPMs), this thesis explores the development of a WSF gamma camera using SiPMs to obtain the position information of scintillation events in a continuous CsI(Na) crystal. The design is highly flexible, allowing the coverage of different areas and the development of compact cameras, with very small dead areas at the edges. After initial studies which confirmed the feasibility of applying SiPMs, a prototype with 5 5 cm2 was assembled and tested at room temperature, in an active field-of-view of 10 10 mm2. Calibration and characterisation of intrinsic properties of this prototype were done using 57Co, while extrinsic measurements were performed using a high-resolution parallel-hole collimator and 99mTc. In addition, a small mouse injected with a radiopharmaceutical was imaged with the developed prototype. Results confirm the great potential of SiPMs when applied in a WSF gamma camera, achieving spatial resolution performance superior to the traditional Anger camera. Furthermore, performance can be improved by an optimisation of experimental conditions, in order to minimise and control the undesirable effects of thermal noise and non-uniformity of response of multiple SiPMs. The development and partial characterisation of a larger SiPM WSF gamma camera with 10 10 cm2 for clinical application are also presented.
Resumo:
Ce mémoire s'intéresse à la reconstruction d'un modèle 3D à partir de plusieurs images. Le modèle 3D est élaboré avec une représentation hiérarchique de voxels sous la forme d'un octree. Un cube englobant le modèle 3D est calculé à partir de la position des caméras. Ce cube contient les voxels et il définit la position de caméras virtuelles. Le modèle 3D est initialisé par une enveloppe convexe basée sur la couleur uniforme du fond des images. Cette enveloppe permet de creuser la périphérie du modèle 3D. Ensuite un coût pondéré est calculé pour évaluer la qualité de chaque voxel à faire partie de la surface de l'objet. Ce coût tient compte de la similarité des pixels provenant de chaque image associée à la caméra virtuelle. Finalement et pour chacune des caméras virtuelles, une surface est calculée basée sur le coût en utilisant la méthode de SGM. La méthode SGM tient compte du voisinage lors du calcul de profondeur et ce mémoire présente une variation de la méthode pour tenir compte des voxels précédemment exclus du modèle par l'étape d'initialisation ou de creusage par une autre surface. Par la suite, les surfaces calculées sont utilisées pour creuser et finaliser le modèle 3D. Ce mémoire présente une combinaison innovante d'étapes permettant de créer un modèle 3D basé sur un ensemble d'images existant ou encore sur une suite d'images capturées en série pouvant mener à la création d'un modèle 3D en temps réel.
Resumo:
Getting images from your mobile phone is best done using bluetooth, remember the image quality on these phones will not be high and you may find you can only print very small images, however camera phones are great for ease of use and look fine on screen.
Resumo:
Capsule Avian predators are principally responsible. Aims To document the fate of Spotted Flycatcher nests and to identify the species responsible for nest predation. Methods During 2005-06, purpose-built, remote, digital nest-cameras were deployed at 65 out of 141 Spotted Flycatcher nests monitored in two study areas, one in south Devon and the second on the border of Bedfordshire and Cambridgeshire. Results Of the 141 nests monitored, 90 were successful (non-camera nests, 49 out of 76 successful, camera nests, 41 out of 65). Fate was determined for 63 of the 65 nests monitored by camera, with 20 predation events documented, all of which occurred during daylight hours. Avian predators carried out 17 of the 20 predations, with the principal nest predator identified as Eurasian Jay Garrulus glandarius. The only mammal recorded predating nests was the Domestic Cat Felis catus, the study therefore providing no evidence that Grey Squirrels Sciurus carolinensis are an important predator of Spotted Flycatcher nests. There was no evidence of differences in nest survival rates at nests with and without cameras. Nest remains following predation events gave little clue as to the identity of the predator species responsible. Conclusions Nest-cameras can be useful tools in the identification of nest predators, and may be deployed with no subsequent effect on nest survival. The majority of predation of Spotted Flycatcher nests in this study was by avian predators, principally the Jay. There was little evidence of predation by mammalian predators. Identification of specific nest predators enhances studies of breeding productivity and predation risk.
Resumo:
This paper presents an image motion model for airborne three-line-array (TLA) push-broom cameras. Both aircraft velocity and attitude instability are taken into account in modeling image motion. Effects of aircraft pitch, roll, and yaw on image motion are analyzed based on geometric relations in designated coordinate systems. The image motion is mathematically modeled by image motion velocity multiplied by exposure time. Quantitative analysis to image motion velocity is then conducted in simulation experiments. The results have shown that image motion caused by aircraft velocity is space invariant while image motion caused by aircraft attitude instability is more complicated. Pitch,roll and yaw all contribute to image motion to different extents. Pitch dominates the along-track image motion and both roll and yaw greatly contribute to the cross-track image motion. These results provide a valuable base for image motion compensation to ensure high accuracy imagery in aerial photogrammetry.
Resumo:
In the last decade, several research results have presented formulations for the auto-calibration problem. Most of these have relied on the evaluation of vanishing points to extract the camera parameters. Normally vanishing points are evaluated using pedestrians or the Manhattan World assumption i.e. it is assumed that the scene is necessarily composed of orthogonal planar surfaces. In this work, we present a robust framework for auto-calibration, with improved results and generalisability for real-life situations. This framework is capable of handling problems such as occlusions and the presence of unexpected objects in the scene. In our tests, we compare our formulation with the state-of-the-art in auto-calibration using pedestrians and Manhattan World-based assumptions. This paper reports on the experiments conducted using publicly available datasets; the results have shown that our formulation represents an improvement over the state-of-the-art.
Resumo:
This thesis is about new digital moving image recording technologies and how they augment the distribution of creativity and the flexibility in moving image production systems, but also impose constraints on how images flow through the production system. The central concept developed in this thesis is ‘creative space’ which links quality and efficiency in moving image production to time for creative work, capacity of digital tools, user skills and the constitution of digital moving image material. The empirical evidence of this thesis is primarily based on semi-structured interviews conducted with Swedish film and TV production representatives.This thesis highlights the importance of pre-production technical planning and proposes a design management support tool (MI-FLOW) as a way to leverage functional workflows that is a prerequisite for efficient and cost effective moving image production.