77 resultados para buller


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1β (IL-1β, 1 μg/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1β-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1β-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1β administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1β could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1β.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypothalamic–pituitary–adrenal axis activation is a hallmark of the stress response. In the case of physical stressors, there is considerable evidence that medullary catecholamine neurones are critical to the activation of the paraventricular nucleus corticotropin-releasing factor cells that constitute the apex of the hypothalamic–pituitary–adrenal axis. In contrast, it has been thought that hypothalamic–pituitary–adrenal axis responses to emotional stressors do not involve brainstem neurones. To investigate this issue we have mapped patterns of restraint-induced neuronal c-fos expression in intact animals and in animals prepared with either paraventricular nucleus-directed injections of a retrograde tracer, lesions of paraventricular nucleus catecholamine terminals, or lesions of the medulla corresponding to the A1 or A2 noradrenergic cell groups. Restraint-induced patterns of neuronal activation within the medulla of intact animals were very similar to those previously reported in response to physical stressors, including the fact that most stressor-responsive, paraventricular nucleus-projecting cells were certainly catecholaminergic and probably noradrenergic. Despite this, the destruction of paraventricular nucleus catecholamine terminals with 6-hydroxydopamine did not alter corticotropin-releasing factor cell responses to restraint. However, animals with ibotenic acid lesions encompassing either the A1 or A2 noradrenergic cell groups displayed significantly suppressed corticotropin-releasing factor cell responses to restraint. Notably, these medullary lesions also suppressed neuronal responses in the medial amygdala, an area that is now considered critical to hypothalamic–pituitary–adrenal axis responses to emotional stressors and that is also known to display a significant increase in noradrenaline turnover during restraint.

We conclude that medullary neurones influence corticotropin-releasing factor cell responses to emotional stressors via a multisynaptic pathway that may involve a noradrenergic input to the medial amygdala. These results overturn the idea that hypothalamic–pituitary–adrenal axis response to emotional stressors can occur independently of the brainstem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined if brain pathways in morphine-dependent rats are activated by opioid withdrawal precipitated outside the central nervous system. Withdrawal precipitated with a peripherally acting quaternary opioid antagonist (naloxone methiodide) increased Fos expression but caused a more restricted pattern of neuronal activation than systemic withdrawal (precipitated with naloxone which enters the brain). There was no effect on locus coeruleus and significantly smaller increases in Fos neurons were produced in most other areas. However in the ventrolateral medulla (A1/C1 catecholamine neurons), nucleus of the solitary tract (A2/C2 catecholamine neurons), lateral parabrachial nucleus, supramamillary nucleus, bed nucleus of the stria terminalis, accumbens core and medial prefrontal cortex no differences in the withdrawal treatments were detected. We have shown that peripheral opioid withdrawal can affect central nervous system pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been hypothesized that the brain categorizes stressors and utilizes neural response pathways that vary in accordance with the assigned category. If this is true, stressors should elicit patterns of neuronal activation within the brain that are category-specific. Data from previous immediate–early gene expression mapping studies have hinted that this is the case, but interstudy differences in methodology render conclusions tenuous. In the present study, immunolabelling for the expression of c-fos was used as a marker of neuronal activity elicited in the rat brain by haemorrhage, immune challenge, noise, restraint and forced swim. All stressors elicited c-fos expression in 25–30% of hypothalamic paraventricular nucleus corticotrophin-releasing-factor cells, suggesting that these stimuli were of comparable strength, at least with regard to their ability to activate the hypothalamic–pituitary–adrenal axis. In the amygdala, haemorrhage and immune challenge both elicited c-fos expression in a large number of neurons in the central nucleus of the amygdala, whereas noise, restraint and forced swim primarily elicited recruitment of cells within the medial nucleus of the amygdala. In the medulla, all stressors recruited similar numbers of noradrenergic (A1 and A2) and adrenergic (C1 and C2) cells. However, haemorrhage and immune challenge elicited c-fos expression in subpopulations of A1 and A2 noradrenergic cells that were significantly more rostral than those recruited by noise, restraint or forced swim. The present data support the suggestion that the brain recognizes at least two major categories of stressor, which we have referred to as ‘physical’ and ‘psychological’. Moreover, the present data suggest that the neural activation footprint that is left in the brain by stressors can be used to determine the category to which they have been assigned by the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central nucleus of the amygdala (CeA) is activated robustly by an immune challenge such as the systemic administration of the proinflammatory cytokine interleukin-1β (IL-1β). Because IL-1β is not believed to cross the blood-brain barrier in any significant amount, it is likely that IL-1β elicits CeA cell recruitment by means of activation of afferents to the CeA. However, although many studies have investigated the origins of afferent inputs to the CeA, we do not know which of these also respond to IL-1β. Therefore, to identify candidate neurons responsible for the recruitment of CeA cells by an immune challenge, we iontophoretically deposited a retrograde tracer, cholera toxin b-subunit (CTb), into the CeA of rats 7 days before systemic delivery of IL-1β (1 μg/kg, i.a.). By using combined immunohistochemistry, we then quantified the number of Fos-positive CTb cells in six major regions known to innervate the CeA. These included the medial prefrontal cortex, paraventricular thalamus (PVT), ventral tegmental area, parabrachial nucleus (PB), nucleus tractus solitarius, and ventrolateral medulla. Our results show that after deposit of CTb into the CeA, the majority of double-labeled cells were located in the PB and the PVT, suggesting that CeA cell activation by systemic IL-1β is likely to arise predominantly from cell bodies located in these regions. These findings may have significant implications in determining the central pathways involved in generating acute central responses to a systemic immune challenge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 μg/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1β, 1 μg/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The encoding of verbal stimuli elicits left-lateralized activation patterns within the medial temporal lobes in healthy adults. In our study, patients with left- and right-sided temporal lobe epilepsy (LTLE, RTLE) were investigated during the encoding and retrieval of word-pair associates using functional magnetic resonance imaging. Functional asymmetry of activation patterns in hippocampal, inferior frontal, and temporolateral neocortical areas associated with language functions was analyzed. Hippocampal activation patterns in patients with LTLE were more right-lateralized than those in patients with RTLE (P<0.05). There were no group differences with respect to lateralization in frontal or temporolateral regions of interest (ROIs). For both groups, frontal cortical activation patterns were significantly more left-lateralized than hippocampal patterns (P<0.05). For patients with LTLE, there was a strong trend toward a difference in functional asymmetry between the temporolateral and hippocampal ROIs (P=0.059). A graded effect of epileptic activity on laterality of the different regional activation patterns is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging during a verbal memory task, we investigated correlations of signal fluctuations within the hippocampus and ipsilateral frontal as well as temporal areas in temporal lobe epilepsy patients. Declarative memory abilities were additionally examined before and after temporal lobe epilepsy surgery. A significant difference exists in functional connectivity between patients whose mnemonic functions deteriorated and those who remained stable or improved. Univariate analyses showed significantly higher preoperative coupling between the hippocampus and Brodmann area 22 for the group that decreased in verbal learning. We suggest greater coupling to reflect higher functional network integrity. Postoperatively reduced learning ability in patients with higher preoperative coupling underlines the importance of hippocampal interaction with cortical areas for successful memory formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcatheter aortic valve implantation (TAVI) has demonstrated the feasibility of treating valvular heart disease with transcatheter therapy. On the back of this success, various transcatheter concepts are being evaluated to treat other valvular disease, especially mitral regurgitation (MR). The concepts currently approved to treat MR replicate surgical mitral valve repair. However, most of them cannot eliminate MR completely. Similar to TAVI, a transcatheter mitral valve implantation may provide a valuable alternative. The FORTIS transcatheter mitral valve (Edwards Lifesciences, Irvine, CA, USA) is a self-expanding device implanted via a transapical approach. We describe our experience and early results in the first five patients treated on compassionate grounds. We also describe the details of the device, selection criteria and technical details of implantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND REG1 is a novel anticoagulation system consisting of pegnivacogin, an RNA aptamer inhibitor of coagulation factor IXa, and anivamersen, a complementary sequence reversal oligonucleotide. We tested the hypothesis that near complete inhibition of factor IXa with pegnivacogin during percutaneous coronary intervention, followed by partial reversal with anivamersen, would reduce ischaemic events compared with bivalirudin, without increasing bleeding. METHODS We did a randomised, open-label, active-controlled, multicentre, superiority trial to compare REG1 with bivalirudin at 225 hospitals in North America and Europe. We planned to randomly allocate 13,200 patients undergoing percutaneous coronary intervention in a 1:1 ratio to either REG1 (pegnivacogin 1 mg/kg bolus [>99% factor IXa inhibition] followed by 80% reversal with anivamersen after percutaneous coronary intervention) or bivalirudin. Exclusion criteria included ST segment elevation myocardial infarction within 48 h. The primary efficacy endpoint was the composite of all-cause death, myocardial infarction, stroke, and unplanned target lesion revascularisation by day 3 after randomisation. The principal safety endpoint was major bleeding. Analysis was by intention to treat. This trial is registered at ClinicalTrials.gov, identifier NCT01848106. The trial was terminated early after enrolment of 3232 patients due to severe allergic reactions. FINDINGS 1616 patients were allocated REG1 and 1616 were assigned bivalirudin, of whom 1605 and 1601 patients, respectively, received the assigned treatment. Severe allergic reactions were reported in ten (1%) of 1605 patients receiving REG1 versus one (<1%) of 1601 patients treated with bivalirudin. The composite primary endpoint did not differ between groups, with 108 (7%) of 1616 patients assigned REG1 and 103 (6%) of 1616 allocated bivalirudin reporting a primary endpoint event (odds ratio [OR] 1·05, 95% CI 0·80-1·39; p=0·72). Major bleeding was similar between treatment groups (seven [<1%] of 1605 receiving REG1 vs two [<1%] of 1601 treated with bivalirudin; OR 3·49, 95% CI 0·73-16·82; p=0·10), but major or minor bleeding was increased with REG1 (104 [6%] vs 65 [4%]; 1·64, 1·19-2·25; p=0·002). INTERPRETATION The reversible factor IXa inhibitor REG1, as currently formulated, is associated with severe allergic reactions. Although statistical power was limited because of early termination, there was no evidence that REG1 reduced ischaemic events or bleeding compared with bivalirudin. FUNDING Regado Biosciences Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ICSBP is a member of the interferon (IFN) regulatory factor (IRF) family that regulates expression of type I interferon (IFN) and IFN-regulated genes. To study the role of the IRF family in viral infection, a cDNA for the DNA-binding domain (DBD) of ICSBP was stably transfected into U937 human monocytic cells. Clones that expressed DBD exhibited a dominant negative phenotype and did not elicit antiviral activity against vesicular stomatitis virus (VSV) infection upon IFN treatment. Most notably, cells expressing DBD were refractory to infection by vaccinia virus (VV) and human immunodeficiency virus type 1 (HIV-1). The inhibition of VV infection was attributed to defective virion assembly, and that of HIV-1 to low CD4 expression and inhibition of viral transcription in DBD clones. HIV-1 and VV were found to have sequences in their regulatory regions similar to the IFN-stimulated response element (ISRE) to which IRF family proteins bind. Accordingly, these viral sequences and a cellular ISRE bound a shared factor(s) expressed in U937 cells. These observations suggest a novel host-virus relationship in which the productive infection of some viruses is regulated by the IRF-dependent transcription pathway through the ISRE.