971 resultados para bulgur wheat


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some bacteria have the capacity to reduce incidence and severity of plant diseases either by inhibiting the pathogen or by modulating the resistance response of the plant. Plants dispose of different resistance mechanisms that are influenced by the biotic and abiotic environment. The present experiments explored the effects of biocontrol strains of Pseudomonas fluorescens on the resistance of wheat varieties against brown rust disease caused by Puccinia triticina. Root inoculation with biocontrol pseudomonads reduced the disease severity on the leaves. The plant response depended on the genotype of both the microbes and the wheat varieties, suggesting a straight interaction at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The species x location interaction was of great importance in explaining the behaviour of genetic material. The study presented here shows, for the first time, the performance, under field conditions of the new tritordeum species, compared to wheat and triticale in a wide range of Mediterranean countries (Spain, Lebanon and Tunisia). The results obtained revealed that despite the diversity of environmental conditions, the main differences in yield were due to genotypes, especially to differences between species. The multi-local study with different growth conditions revealed important information about the water availability effect on yield. In the lowest yielding environments (Tunisia rainfed), Tritordeum and triticale yields were equivalent. However under better growth conditions (Spain), tritordeum yield was shown to be lower than wheat and triticale. Interestingly, when water limitation was extended during the pre-anthesis period, differences in tritordeum versus wheat-triticale yield rate were larger than when water stress occurred during anthesis. These variations were explained by the fact that kernel weight has been found as the limiting factor for yield determination in tritordeum, and a delay in the anthesis date may have been the cause for the low kernel weight and low yield under Mediterranean drought conditions. Such differences in yield between tritordeum and wheat or triticale could be explained by the fact that tritordeum is a relatively new species and far fewer resources have been devoted to its improvement when compared to wheat and triticale. Our results suggest that breeding efforts should be directed to an earlier anthesis date and a longer grain filling period. tritordeum proved to have possibilities to be grown under drought environments as a new crop, since its performance was quite close to wheat and triticale. Besides, it has qualitative added values that may improve farmers' income per unit land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Powdery mildew is an important disease of wheat caused by the obligate biotrophic fungus Blumeria graminis f. sp. tritici. This pathogen invades exclusively epidermal cells after penetrating directly through the cell wall. Because powdery mildew colonizes exclusively epidermal cells, it is of importance not only to identify genes which are activated, but also to monitor tissue specificity of gene activation. Acquired resistance of wheat to powdery mildew can be induced by a previous inoculation with the non-host pathogen B. graminis f. sp. hordei, the causal agent of barley powdery mildew. The establishment of the resistant state is accompanied by the activation of genes. Here we report the tissue-specific cDNA-AFLP analysis and cloning of transcripts accumulating 6 and 24 h after the resistance-inducing inoculation with B. graminis f. sp. hordei. A total of 25,000 fragments estimated to represent about 17,000 transcripts were displayed. Out of these, 141 transcripts, were found to accumulate after Bgh inoculation using microarray hybridization analysis. Forty-four accumulated predominantly in the epidermis whereas 76 transcripts accumulated mostly in mesophyll tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane proteins are notoriously difficult to express in a soluble form. Here, we use wheat germ cell-free expression in the presence of various detergents to produce the non-structural membrane proteins 2, 4B and 5A of the hepatitis C virus (HCV). We show that lauryl maltose neopentyl glycol (MNG-3) and dodecyl octaethylene glycol ether (C12E8) detergents can yield essentially soluble membrane proteins at detergent concentrations that do not inhibit the cell-free reaction. This finding can be explained by the low critical micelle concentration (CMC) of these detergents, which keeps the monomer concentrations low while at the same time providing the necessary excess of detergent concentration above CMC required for full target protein solubilization. We estimate that a tenfold excess of detergent micelles with respect to the protein concentration is sufficient for solubilization, a number that we propose as a guideline for detergent screening assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oryzaephilus surinamensis is one of most common insect pest of grains and a variety of stored products, and has been found in high numbers in almost all storage facilities. However, laboratory mass rearing of this insect for bioassays is not a simple task, mainly because of its feeding behavior, small size, and high mobility. Thus, the aim of this work was to develop a simple and efficient laboratory rearing method for O. surinamensis, using wheat kernels milled into different granulometry to obtain large number and standardized population at different life stages for bioassays. The adults were collected from storage grain facilities in the southern region of Brazil and 100 specimens were placed inside glass jars with wheat kernels milled at different grades and kept at 25±0.5ºC and 65±5% relative humidity. The insects were allowed to copulate and lay eggs for 10 days and then removed. The number of eggs, larvae, and pupae was counted at five-day intervals; longevity of the second generation adults was evaluated. The kernels milled at grade 20 were the best medium for offspring production: 89% of eggs by the 5th day; 30.5% larvae by the 10th day; 43% pupae by the 30th day and 63.4% adults at the 46th day. The adults survived up to 450 days. Culturing O. surinamensis under the described conditions, transferring the parental adults by the 10th day after infestation and replacing the media when population builds up will produce enough insects of each stage for various laboratory bioassays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Prosessoinnin vaikutus vehnän sivutuotteita sisältävien rehuseosten aminohappojen ohutsuolisulavuuteen sioilla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kuivaamattoman vehnäproteiinin ja soijarouheen aminohappojen ohutsuolisulavuus sioilla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Vehnästä ja ohrasta eristettyjen F. avenaceum -punahomekantojen analysointi UP-PCR-menetelmällä

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Diuraphis frequens -kirva vehnässä