911 resultados para breeding livestock
Resumo:
Increased occurrence of drought and dry spells during the growing season have resulted in increased interest in protection of tropical water catchment areas. In Mgeta, a water catchment area in the Uluguru Mountains in Tanzania, water used for vegetable and fruit production is provided through canals from the Uluguru South Forest Reserve. The clearing of forest land for cultivation in the steep slopes in the area is causing severe land degradation, which is threatening the water catchment area, livelihoods, and food security of the local communities, as well as the major population centers in the lowlands. In this paper, the economic performance of a traditional cropping-livestock system with East African (EA)-goats and pigs and extensive vegetable production is compared with a more sustainable and environmentally friendly crop-dairy goat production system. A linear programming (LP) crop-livestock model, maximizing farm income considering the environmental constraints in the area was applied for studying the economic performance of dairy goats in the production system. The model was worked out for the rainy and dry seasons and the analysis was conducted for a basic scenario representing the current situation, based on the variability in the 30 years period from 1982-2012, and in a scenario of both lower crop yields and increased crop variability due to climate change. Data obtained from a sample of 60 farmers that were interviewed using a questionnaire was used to develop and parameterize the model. The study found that in the steep slopes of the area, a crop-dairy goat system with extensive use of grass and multipurpose trees (MPTs) would do better than the traditional vegetable gardening with the EA goat production system. The crop-dairy goat system was superior both in the basic and in a climate change scenario since the yield variation of the grass and MPTs system was less affected compared to vegetable crops due to more tree cover and the use of perennial grasses. However, the goat milk production in the area was constrained by inadequate feeding and lack of an appropriate breeding program. Hence, farmers should enhance goat milk production by supplementing with more concentrate feed and by implementing goat-breeding principles. Moreover, policy measures to promote such a development are briefly discussed.
Resumo:
The husbandry of domestic dairy cattle as one of the components of livestock sub-sector development is hopefully to increase numerously the capacity and the quality on its milk production, to gradually meet national milk demand and face the competitiveness at the global. The achievement of this purpose should be supported by the production of dairy breeding stock in good quality and sufficient number to increase efficiency of both quantity and quality of domestic milk production. One of important aspect that should be prepared is in determining national breeding system of dairy cattle that can function effectively as guidance and regulation for producing, distributing, and using dairy cattle as “domestic breeding stockâ€. As in other livestock, breeding system of dairy cattle basically constituted of three main subsystems, i.e. production , distribution and marketing, and quality establishment subsystem. The paper discusses some aspects of these three subsystems to give considerable input in preparing the national concept of dairy cattle breeding system. enterprise (Animal Production 1(2): 43-55 (1999) KeyWords: dairy cattle, breeding stock, milk production.
Resumo:
In 1987 Landcorp was corporatised as a state-owned enterprise under New Zealand's public sector reforms and began operating as a collection of farms located throughout the country. Twenty years later, Landcorp had established a record of careful land management, productivity growth and solid financial returns, transforming from a fledgling company into one of the country's largest farmers. Landcorp was a major agribusiness with assets of more than $1.4 billion, built on a culture of continuous improvement and an innovative approach to business. The challenge going forward was to continue growth without increasing land ownership : cultivating ideas to grow in less conventional ways. This case study examines the operations, development and innovative approach to business undertaken by Landcorp Farming Limited, concentrating on the challenges faced by the company to maintain profits and growth, and its strategic direction for the future.
Resumo:
Somatic embryogenesis and transformation systems are indispensable modern plant breeding components since they provide an alternative platform to develop control strategies against the plethora of pests and diseases affecting many agronomic crops. This review discusses some of the factors affecting somatic embryogenesis and transformation, highlights the advantages and limitations of these systems and explores these systems as breeding tools for the development of crops with improved agronomic traits. The regeneration of non-chimeric transgenic crops through somatic embryogenesis with introduced disease and pest-resistant genes for instance, would be of significant benefit to growers worldwide.
Resumo:
This thesis presents a design investigation into how traditional technology-orientated markets can use design led innovation (DLI) strategies in order to achieve better market penetration of disruptive products. In a review of the Australian livestock industry, considering historical information and present-day trends, a lack of socio-cultural consideration was identified in the design and implementation of products and systems, previously been taken to market. Hence the adoption of these novel products has been documented as extremely slow. Classical diffusion models have typically been used in order to implement these products. However, this thesis poses that it is through the strategic intent of design led innovation, where heavily technology-orientated markets (such as the Australian livestock industry), can achieve better final adoption rates. By considering a range of external factors (business models, technology and user needs), rather than focusing design efforts solely on the technology, it is argued that using DLI approach will lead to disruptive innovations being made easier to adopt in the Australian livestock industry. This thesis therefore explored two research questions: 1. What are the social inhibitors to the adoption of a new technology in the Australian livestock industry? 2. Can design be used to gain a significant feedback response to the proposed innovation? In order to answer these questions, this thesis used a design led innovation approach to investigate the livestock industry, centring on how design can be used early on in the development of disruptive products being taken to market. This thesis used a three stage data collection programme, combining methods of design thinking, co-design and participatory design. The first study found four key themes to the social barriers of technology adoption; Social attitudes to innovation, Market monitoring, Attitude to 3D imaging and Online processes. These themes were built upon through a design thinking/co-design approach to create three ‘future scenarios’ to be tested in participant workshops. The analysis of the data collection found four key socio-cultural barriers that inhibited the adoption of a disruptive innovation in the Australian livestock industry. These were found to be a lack of Education, a Culture of Innovation, a Lack of Engagement and Communication barriers. This thesis recommends five key areas to be focused upon in the subsequent design of a new product in the Australian livestock industry. These recommendations are made to business and design managers looking to introduce disruptive innovations in this industry. Moreover, the thesis presents three design implications relating to stakeholder attitudes, practical constraints and technological restrictions of innovations within the industry.
Resumo:
Plant tissue culture is a technique that exploits the ability of many plant cells to revert to a meristematic state. Although originally developed for botanical research, plant tissue culture has now evolved into important commercial practices and has become a significant research tool in agriculture, horticulture and in many other areas of plant sciences. Plant tissue culture is the sterile culture of plant cells, tissues, or organs under aseptic conditions leading to cell multiplication or regeneration or organs and whole plants. The steps required to develop reliable systems for plant regeneration and their application in plant biotechnology are reviewed in countless books. Some of the major landmarks in the evolution of in vitro techniques are summarised in Table 5.1. In this chapter the current applications of this technology to agriculture, horticulture, forestry and plant breeding are briefly described with specific examples from Australian plants when applicable.
Resumo:
Starting from the study at the beginning of the East German "Heterosisfeldversuch", where PANICKE et al. (1975) considered the possibilities of a targeted use of inbreeding and heterotic effects, we show and discuss results of inbreeding studies in the USA dairy cattle breeding. Several research groups worldwide presented effective tools for managing inbreeding in dairy cattle. Their efforts underline the need of inbreeding studies. Contemplating inbreeding is necessary for any breeding decision to avoid inbreeding depression and for improved genetic analyses, e.g. in QTL- estimation. A novel methodology (HERNANDEZ-SANCHEZ et al., 2004a and b) is suggested for estimating inbreeding at the three levels of population, individual and locus.
Resumo:
Climate change presents a range of challenges for animal agriculture in Australia. Livestock production will be affected by changes in temperature and water availability through impacts on pasture and forage crop quantity and quality, feed-grain production and price, and disease and pest distributions. This paper provides an overview of these impacts and the broader effects on landscape functionality, with a focus on recent research on effects of increasing temperature, changing rainfall patterns, and increased climate variability on animal health, growth, and reproduction, including through heat stress, and potential adaptation strategies. The rate of adoption of adaptation strategies by livestock producers will depend on perceptions of the uncertainty in projected climate and regional-scale impacts and associated risk. However, management changes adopted by farmers in parts of Australia during recent extended drought and associated heatwaves, trends consistent with long-term predicted climate patterns, provide some insights into the capacity for practical adaptation strategies. Animal production systems will also be significantly affected by climate change policy and national targets to address greenhouse gas emissions, since livestock are estimated to contribute ~10% of Australia’s total emissions and 8–11% of global emissions, with additional farm emissions associated with activities such as feed production. More than two-thirds of emissions are attributed to ruminant animals. This paper discusses the challenges and opportunities facing livestock industries in Australia in adapting to and mitigating climate change. It examines the research needed to better define practical options to reduce the emissions intensity of livestock products, enhance adaptation opportunities, and support the continued contribution of animal agriculture to Australia’s economy, environment, and regional communities.
Resumo:
Use of appropriate nursery environments will maximize gain from selection for yield of wheat (Triticum aestivum L.) in the target population of environments of a breeding program. The objective of this study was to investigate how well-irrigated (low-stress) nursery environments predict yield of lines in target environments that varied in degree of water limitation. Fifteen lines were sampled from the preliminary yield evaluation stage of the Queensland wheat breeding program and tested in 26 trials under on-farm conditions (Target Environments) across nine years (1985 to 1993) and also in 27 trials conducted at three research stations (Nursery Environments) in three years (1987 to 1989). The nursery environments were structured to impose different levels of water and nitrogen (N) limitation, whereas the target environments represented a random sample of on-farm conditions from the target population of environments. Indirect selection and pattern analysis methods were used to investigate selection for yield in the nursery environments and gain from selection in the target environments. Yield under low-stress nursery conditions was an effective predictor of yield under similar low-stress target environments (r = 0.89, P < 0.01). However, the value of the low-stress nursery as a predictor of yield in the water-limited target environments decreased with increasing water stress (moderate stress r = 0.53, P < 0.05, to r = 0.38, P > 0.05; severe stress r = -0.08, P > 0.05). Yield in the stress nurseries was a poor predictor of yield in the target environments. Until there is a clear understanding of the physiological-genetic basis of variation for adaptation of wheat to the water-limited environments in Queensland, yield improvement can best be achieved by selection for a combination of yield potential in an irrigated low-stress nursery and yield in on-farm trials that sample the range of water-limited environments of the target population of environments.
Resumo:
Even when no baseline data are available, the impacts of 150 years of livestock grazing on natural grasslands can be assessed using a combined approach of grazing manipulation and regional-scale assessment of the flora. Here, we demonstrate the efficacy of this method across 18 sites in the semidesert Mitchell grasslands of northeastern Australia. Fifteen-year-old exclosures (ungrazed and macropod grazed) revealed that the dominant perennial grasses in the genus Astrebla do not respond negatively to grazing disturbance typical of commercial pastoralism. Neutral, positive, intermediate, and negative responses to grazing disturbance were recorded amongst plant species with no single life-form group associated with any response type. Only one exotic species, Cenchrus ciliaris, was recorded at low frequency. The strongest negative response was from a native annual grass, Chionachne hubbardiana, an example of a species that is highly sensitive to grazing disturbance. Herbarium records revealed only scant evidence that species with a negative response to grazing have declined through the period of commercial pastoralism. A regional analysis identified 14 from a total of 433 plant species in the regional flora that may be rare and potentially threatened by grazing disturbance. However, a targeted survey precluded grazing as a cause of decline for seven of these based on low palatability and positive responses to grazing and other disturbance. Our findings suggest that livestock grazing of semidesert grasslands with a short evolutionary history of ungulate grazing has altered plant composition, but has not caused declines in the dominant perennial grasses or in species richness as predicted by the preceding literature. The biggest impact of commercial pastoralism is the spread of woody leguminous trees that can transform grassland to thorny shrubland. The conservation of plant biodiversity is largely compatible with commercial pastoralism provided these woody weeds are controlled, but reserves strategically positioned within water remote areas are necessary to protect grazing-sensitive species. This study demonstrates that a combination of experimental studies and regional surveys can be used to understand anthropogenic impacts on natural ecosystems where reference habitat is not available.
Resumo:
Bats (Mammalia: Chiroptera) are among the most successful mammals and likely display the widest range of mating systems within the Class. One mating system that is underrepresented in the Chiroptera is lek breeding, which is characterized by aggregations of sexually displaying males that are visited by receptive females who appraise male displays and actively choose mates, yet receive no direct benefits such as assistance in parenting. Leks are thought to form when males can defend neither resources nor females, making it more economical to establish small breeding territories and self-advertise through sexual displays. Lekking is rare in mammals, and it has been suggested that a lack in the mobility required by females to economically seek out aggregations of sexually displaying males may explain this rarity. Bats, like birds, do not suffer reduced mobility and yet out of over a thousand described species, only one has been confirmed to breed in leks. We examine the rarity of lekking in bats by providing an overview on the current state of knowledge of their mating systems and discuss the ecological and social determinants for the observed trends, contrasted with the prerequisites of lek-breeding behaviour. We use the breeding behaviour of New Zealand's lesser short-tailed bat Mystacina tuberculata, which is believed to be a lek breeder, as a case study for the examination of potential lekking behaviour in bats, and highlight the importance of such research for the development of effective conservation strategies.
Resumo:
In The Climate Change Review, Ross Garnaut emphasised that ‘Climate change and climate change mitigation will bring about major structural change in the agriculture, forestry and other land use sectors’. He provides this overview of the effects of climate change on food demand and supply: ‘Domestic food production in many developing countries will be at immediate risk of reductions in agricultural productivity due to crop failure, livestock loss, severe weather events and new patterns of pests and diseases.’ He observes that ‘Changes to local climate and water availability will be key determinants of where agricultural production occurs and what is produced.’ Gert Würtenberger has commented that modern plant breeding is particularly concerned with addressing larger issues about nutrition, food security and climate change: ‘Modern plant breeding has an increasing importance with regard to the continuously growing demand for plants for nutritional and feeding purposes as well as with regard to renewal energy sources and the challenges caused by climate changes.’ Moreover, he notes that there is a wide array of scientific and technological means of breeding new plant varieties: ‘Apart from classical breeding, technologies have an important role in the development of plants that satisfy the various requirements that industrial and agricultural challenges expect to be fulfilled.’ He comments: ‘Plant variety rights, as well as patents which protect such results, are of increasingly high importance to the breeders and enterprises involved in plant development programmes.’ There has been larger interest in the intersections between sustainable agriculture, environmental protection and food security. The debate over agricultural intellectual property is a polarised one, particularly between plant breeders, agricultural biotechnology companies and a range of environmentalist groups. Susan Sell comments that there are complex intellectual property battles surrounding agriculture: 'Seeds are at the centre of a complex political dynamic between stakeholders. Access to seeds concerns the balance between private rights and public obligations, private ownership and the public domain, and commercial versus humanitarian objectives.' Part I of this chapter considers debates in respect of plant breeders’ rights, food security and climate change in relation to the UPOV Convention 1991. Part II explores efforts by agricultural biotechnology companies to patent climate-ready crops. Part III considers the report of the Special Rapporteur for Food, Olivier De Schutter. It looks at a variety of options to encourage access to plant varieties with climate adaptive or mitigating properties.
Females as mobile resources: communal roosts promote the adoption of lek breeding in a temperate bat
Resumo:
Males of lek-breeding species defend clustered territories from which they display to visiting females. However, the mechanisms leading to the adoption of clustered male display sites are often unknown. In this study, we examined the possibility of a resource-based lek in New Zealand’s lesser short-tailed bat (Mystacina tuberculata) (Mammalia: Chiroptera), by assessing the placement of “singing roosts” used by males in relation to communal roosting sites used by females. The “resource-based lek” model posits that males settle near resources required by females to increase female encounter rates. For most bat species, where females are highly mobile and widely dispersed across landscapes while foraging, communal daytime roosts dominated by females may represent such a resource. Through use of video footage, spatial analyses of singing-roost locations, and passive-integrated transponder tags we confirmed that M. tuberculata employs a lek mating system. We found that male singing roosts were significantly clustered in space, were defended by resident individuals, and were visited by females (who did not receive resources from males) for mating purposes. Transponder records also indicated that some singing roosts were shared between multiple males. Spatial logistic regression indicated that singing-roost locations were associated with communal roosting sites. Communal roosts are selected based on criteria independent of the locations of singing roosts, suggesting that males responded to the location of communal roosts and not the reverse. Mystacina tuberculata thus provides evidence of a resource-based lek, and is only the second bat species worldwide confirmed to use a lek-mating system.