986 resultados para brain sexual differentiation
Resumo:
Htr1a is one of the most widespread serotonin receptor across the brain, strongly expressed in CAI region of hippocampus. Our laboratory studies the phenotypic alteration in 5HTla- deficient mice (Htr1aK0), characterized an abnormal anxious-like behavior. Our aim is to evaluate the regulation of this cognitive process by understanding the circuitry involved. This phenotype sets up early during development and has durable effect in adulthood. Our laboratory showed that adult Htr1aK0 male mice displaying exuberant dendritic growth of oblique dendrites in a specific layer of a CAI pyramidal neurons, the stratum radiatum. Application of drugs in organotypic cultures and by in vivo injections revealed that GluN2B, a subunit of NMDA receptor highly expressed during development, is responsible for this dendritic exuberance. Immunohistochemistry highlighted in particular a synaptic enrichment of GluN2B in stratum radiatum of Htr1aK0 CAI pyramidal neurons at puberty. Finally, original analysis of Htr1aK0 mouse behavior showed a different response to anxiety between male and female. Htr1a activation down-regulates the CaMKII activity in the CAI pyramidal neurons. CaMKII directly favors the membrane conductance and stability of GluN2B at the synapse. In the context of the Htr1aK0 mouse, GluN2B is the final common pathway of our phenotype. This subunit is well known to regulate the threshold of LTD/LTP and the dendritogenesis during development. In my thesis, I establish a link between the gender differences in the morphology and the physiology in the Htr1aK0 mice during development to understand how these characteristics shape the circuit with prominent cognitive impacts in adulthood. My study highlighted that during development, Htr1aK0 male mice show a constant increase of the dendritic growth of oblique dendrites from early ages until adulthood associated with an increased physiological impact of altered GluN2A/GluN2B ratio. Whereas during puberty, synaptic contribution of GluN2B to NMDA response is higher in Htr1aK0 compared to WT male mice, this ratio comes back to normal values towards adulthood. However, this recovery of the ratio of GluN2A/GluN2B located at the synaptic level is concomitant with the lateral diffusion of excess GluN2B subunits, leading to extrasynaptic enrichment. The main impact was a lowering of the LTP threshold characterized by strong increased potentiation of synaptic strength after 5 Hz low frequency stimulation. Moreover, the extrasynaptic GluN2B overexpression leads to a shift of the maturation phase switch explaining the exuberant morphology. However, Htr1aK0 females characterized during the 3 first weeks of development by an increase of the dendritic growth of oblique dendrites showed starting at puberty that the dendrite arborization returns progressively to WT values. The physiological impact of GluN2B was investigated and directly linked to this morphology, since Htr1aK0 female mice does not show alteration of the synaptic strength during development. These observations show a compensation occurring in Htr1aK0 female, responsible for a rescue of the phenotype morphologically, physiologically and to be tested behaviorally. We highlighted then the biological processes underlying this compensation. During development, sexual hormones such as testosterone and estrogen are responsible to induce sexual differentiation of specific brain regions. I demonstrated that estrogen, but not testosterone, was able to reduce both in vitro and in vivo the dendritic arborization early during development, through activation of GPER-1, a G-coupled protein estrogen receptor, which phenocopy the activation of Htr1a by reducing GluN2B conductance and stability. I then identified a pathway, parallel to Htr1a, able to regulate GluN2B and responsible for the morphological and physiological phenotype in Htr1aK0 female mice. The specific rise of estrogen occurring at puberty in female is responsible for the compensation observed and induces a late rescue of the Htr1aK0 phenotype by activation GPER-1. -- Htr1a est un des récepteurs à la sérotonine les plus répandus dans le cerveau, fortement exprimé dans la région CAI de l'hippocampe. Notre laboratoire étudie les altérations phénotypiques de souris déficientes pour ce récepteur (Htr1aK0), caractérisées par un comportement avec des traits anxieux. Notre objectif est d'évaluer la régulation de ces processus cognitifs en comprenant les connexions nerveuses impliquées. Ce phénotype se met en place tôt au cours du développement et présente un effet durable à l'âge adulte. Notre laboratoire a montré que les souris Htr1aK0 mâles adultes se caractérisent par une croissance exubérante des dendrites obliques dans une couche spécifique des neurones pyramidaux du CAI, le stratum radiatum. L'application de drogues sur cultures organotypiques et par injections in vivo ont révélé que GluN2B, une sous-unité du récepteur NMDA fortement exprimée au cours du développement, est responsable de cette exubérance dendritique. Des expériences d'immunohistochimie ont notamment mis en évidence un enrichissement synaptique de GluN2B durant la puberté dans le stratum radiatum des neurones de la région CAI des souris Htr1aK0. Finalement, l'analyse originale du comportement des souris Htr1aK0 a montré une différence de réponse à l'anxiété entre mâles et femelles. L'activation de Htr1a diminue l'activité de la CaMKII dans les neurones pyramidaux du CAI. La CaMKII favorise directement la conductance et la stabilité de la sous-unité GluN2B à la synapse. Dans le contexte de la souris Htr1aK0, GluN2B est le « médiateur » de notre phénotype. Cette sous-unité est particulièrement connue pour réguler le seuil de LTD-LTP ainsi que la dendritogénèse durant le développement. Dans ma thèse, j'ai établi le lien entre les différences dépendant du genre dans la morphologie et physiologie des souris Htr1aK0 au cours du développement pour comprendre comment ces caractéristiques modulent le circuit accompagnés d'impacts cognitifs visibles à l'âge adulte. Mon étude a mis en évidence que durant le développement, les souris mâles Htr1aK0 montrent une constante augmentation de la croissance des dendrites obliques entre les premières semaines et l'âge adulte associée à une augmentation de l'impact physiologique du ratio GluN2A/GluN2B altéré. Alors que durant la puberté, la contribution synaptique de GluN2B à la réponse NMDA est plus haute chez la souris mâle Htr1aK0 que le WT, ce ratio revient à des valeurs normales à l'âge adulte. Cependant, cette récupération de l'expression du récepteur au niveau synaptique est concomitante avec la diffusion des sous-unités GluN2B excédantes, amenant alors à un enrichissement extrasynaptique. Le principal impact est une diminution du seuil de la LTP caractérisée par une forte potentiation de la plasticité après une stimulation basse fréquence à 5 Hz. De plus, la surexpression des GluN2B extrasynaptiques conduit à un décalage de la bascule à la phase de maturation, expliquant la morphologie dendritique exubérante. Cependant, les femelles Htr1aK0 initialement caractérisées pendant les 3 premières semaines du développement par une augmentation de la croissance des dendrites obliques montrent à partir de la puberté que cette arborisation dendritique retourne à des valeurs WT. L'impact physiologique de GLuN2B a été investigué et mis en lien avec cette morphologie, étant donné que les femelles Htr1aK0 ne montrent pas d'altération de la plasticité durant le développement. Ces observations montrent une compensation se produisant chez la femelle Htr1aK0, responsable d'une récupération du phénotype morphologique, physiologique et peut-être comportemental. Nous avons souligné les processus biologiques sous-jacent à cette compensation. Au cours du développement, les hormones sexuelles telles que la testostérone et l'estrogène sont responsables de la différentiation sexuelle de régions du cerveau spécifiques. J'ai démontré que l'estrogène, mais pas la testostérone, était capable de réduire in vitro et in vivo l'arborisation dendritique tôt dans le développement au travers de l'activation du récepteur GPER-1, un récepteur aux estrogènes couplés à un protéine G, qui phénocopie l'activation de Htr1a en réduisant la conductance et la stabilité de GluN2B à la membrane. J'ai identifié une voie de signalisation parallèle à celle de Htr1a, capable de réguler GluN2B et responsable du phénotype morphologique et physiologique de la souris femelle Htr1aK0. La montée spécifique d'estrogène se déroulant à la puberté chez la femelle est responsable de cette compensation et implique une récupération tardive du phénotype Htr1aK0 par l'activation de GPER-1.
Resumo:
A interação sexual no sentido de ação conjunta ou recíproca supõe a existência de parceiros dimorficamente caracterizados a partir da estrutura cromossomial X-X ou X-Y. A diferenciação do sexo, entretanto, não depende apenas da condição cromossomial, podendo mesmo ser invertida quando a ação hormonal for alterada. Os dados disponíveis apontam os andrógenos como um dos principais agentes de diferenciação, afetando o organismo "básico" feminino num sentido masculinizante. A medida que se progride na escala animal, contudo, os aspectos estritamente biológicos perdem em importância e as condições ambientais aos poucos se impõem . Nos primatas superiores, caso não se estabeleçam condições adequadas de aprendizagem, o desenvolvimento sexual não se completa e a cópula se torna inviável. No ser humano, além dessa aprendizagem, fatores socio-culturais respondem pelo comportamento considerado masculino ou feminino que supostamente será exibido por cada parceiro da interação. Também as noções de estética são seriamente determinadas pela tradição cultural, com cada povo tendendo a valorizar os próprios traços raciais como ideal de beleza. Do ponto de vista físico, entretanto, pode-se tentar estabelecer algumas constantes, como as formas arredondadas para a mulher e o porte atl6tico ou capacidades gerais , para o homem. Uma vez estabelecida a atração e encontrado local e momento adequado, a interação sexual tende a uma progressiva intensificação e genitalização, que, nas sociedades de tradição judaico-cristã se reflete numa sequência, mais ou menos previsível, envolvendo carícias gerais, beijos, acariciamento de seios e genitais até a união genito-genital o significado e a forma como cada cultura desenvolve os contatos físicos de intercambio erógeno revelam tão grande variedade que já se apontou essa polimorfismo corno aquisição típica do ser humano. Assim, ao contrário do que faz supor o ideal de abstinência, é na capacidade de buscar e estender o prazer além da s1mples atividade orgânico-sexual que o homem, em sexo, se liberta da limitação animal.
Resumo:
The aim of the present study was to investigate the effects of hydrocortisone during the prenatal period and its later repercussions on the fertility and sexual behavior of male rats. Pregnant rats were treated (s.c.) with hydrocortisone acetate, at 1.5 mg/day on the 17th, 18th, and 19th days of gestation. Decreased body weight and no alteration in anogenital distance were observed in male offspring. Adulthood, presented reductions of body weight, plasma testosterone levels, and seminal-vesicle wet weight without secretion as well as no alteration in the wet weights of the testes, epididymis, and seminal vesicle with secretion in the treated group. Males exposed to hydrocortisone during the prenatal period were able to mate with normal females, which became pregnant but exhibited an increased number of post-implantation losses. In spite of this, these treated males exhibited decreased male sexual behavior and the appearance of female sexual behavior after these male rats were castrated and pretreated with exogenous estrogen. These results indicate that exposure to hydrocortisone in the later stages of pregnancy may have a long-term effect on the fertility and sexual behavior of mate rats, suggesting an incomplete masculinization and defeminization of the central nervous system. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Farmacologia) - IBB
Resumo:
Pacientes portadores de Distúrbios da Diferenciação Sexual (DDS) apresentam maior risco de desenvolver neoplasias. As alterações neoplásicas mais frequentes nestes pacientes são: o gonadoblastoma, o carcinoma in situ/tumores de células germinativas intra-tubulares não classificados. As células germinativas tipo II são as percussoras destas lesões na maioria dos casos. O gonadoblastoma é uma neoplasia benigna que não metastiza, mas pela alta prevalência e risco de evolução para as formas malignas de neoplasias gonadais, merece especial atenção. Em uma região próxima ao centrômero no braço curto do cromossomo Y, foi mapeado o gene TSPY, imputado como o gene do gonadoblastoma. Este gene expressa-se em grande quantidade nas células que constituem o gonadoblastoma. Foram avaliados 47 pacientes com DDS nos seus cariótipos e na pesquisa da prevalência do TSPY através da técnica da reação em cadeia de polimerase (PCR). As análises revelaram que 50% das pacientes com síndrome de Turner, mesmo sem o cromossomo Y, íntegro ou não, evidente no cariótipo, foram positivas para a presença do gene TSPY. Estes dados evidenciam a importância da investigação do referido gene no acompanhamento e orientação de gonadectomia em pacientes com DDS.
Resumo:
Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.
Resumo:
This study investigated the effects of perinatal cadmium exposure on sexual behavior, organ weight, and testosterone levels in adult rats. We examined whether immediate postpartum testosterone administration is able to reverse the toxic effects of the metal. Forty pregnant Wistar rats were divided into three groups: 1) control, 2) 10 mg kg-1 cadmium chloride per day, and 3) 20 mg kg-1 cadmium chloride per day. These dams were treated on gestational days 18 and 21 and from lactation 1 to 7. Immediately after birth, half of the offspring from the experimental and control groups received 50 μl (i.p.) of 0.2% testosterone. Male sexual behavior, histological analysis and weight of organs as well as serum testosterone levels were assessed. Results showed that both cadmium doses disrupted sexual behavior in male rats, and postnatal treatment with testosterone reversed the toxic effects of 10 mg kg-1 cadmium and attenuated the effects of 20 mg kg-1 cadmium. Body weight and absolute testis, epididymis, and seminal vesicle weight were decreased by the higher cadmium dose, and testosterone supplementation did not reverse these effects. Serum testosterone levels were unaffected by both cadmium doses. No histological changes were detected in all organs analyzed. Maternal cadmium exposure effects in sexual parameters of male rat offspring were explained by the altered masculinization of the hypothalamus. We suggest that cadmium damaged cerebral sexual differentiation by its actions as an endocrine disruptor and supported by the changes discretely observed from early life during sexual development to adult life, reflected by sexual behavior. Testosterone supplementation after birth reversed some crucial parameters directly related to sexual behavior.
Resumo:
Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.
Resumo:
The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.
Resumo:
Research on endocrine disruption in fish has been dominated by studies on estrogen-active compounds which act as mimics of the natural estrogen, 17β-estradiol (E2), and generally exert their biological actions by binding to and activation of estrogen receptors (ERs). Estrogens play central roles in reproductive physiology and regulate (female) sexual differentiation. In line with this, most adverse effects reported for fish exposed to environmental estrogens relate to sexual differentiation and reproduction. E2, however, utilizes a variety of signaling mechanisms, has multifaceted functions and targets, and therefore the toxicological and ecological effects of environmental estrogens in fish will extend beyond those associated with the reproduction. This review first describes the diversity of estrogen receptor signaling in fish, including both genomic and non-genomic mechanisms, and receptor crosstalk. It then considers the range of non-reproductive physiological processes in fish that are known to be responsive to estrogens, including sensory systems, the brain, the immune system, growth, specifically through the growth hormone/insulin-like growth factor system, and osmoregulation. The diversity in estrogen responses between fish species is then addressed, framed within evolutionary and ecological contexts, and we make assessments on their relevance for toxicological sensitivity as well as ecological vulnerability. The diversity of estrogen actions raises questions whether current risk assessment strategies, which focus on reproductive endpoints, and a few model fish species only, are protective of the wider potential health effects of estrogens. Available - although limited - evidence nevertheless suggests that quantitative environmental threshold concentrations for environmental protection derived from reproductive tests with model fish species are protective for non-reproductive effects as well. The diversity of actions of estrogens across divergent physiological systems, however, may lead to and underestimation of impacts on fish populations as their effects are generally considered on one functional process only and this may underrepresent the impact on the different physiological processes collectively.
Resumo:
One full length cDNA clone, designated 3aH15, was isolated from a rat brain cDNA library using a fragment of CYP3A2 cDNA as a probe. 3aH15 encoded a protein composed of 503 amino acid residues. The deduced amino acid sequence of 3aH15 was 92% identical to mouse Cyp3a-13 and had a 68.4% to 76.5% homology with the other reported rat CYP3A sequences. Clone 3aH15 was thus named CYP3A9 by Cytochrome P450 Nomenclature Committee. CYP3A9 seems to the major CYP3A isozyme expressed in rat brain. Sexual dimorphism of the expression of CYP3A9 was shown for the first time in rat brain as well as in rat liver. CYP3A9 appears to be female specific in rat liver based on the standards proposed by Kato and Yamazoe who defined sex specific expression of P450s as being a 10-fold or higher expression level in one sex compared with the other. CYP3A9 gene expression was inducible by estrogen treatment both in male and in female rats. Male rats treated with estrogen had a similar expression level of CYP3A9 mRNA both in the liver and brain. Ovariectomy of adult female rats drastically reduced the mRNA level of CYP3A9 which could be fully restored by estrogen replacement. On the other hand, only a two-fold induction of CYP3A9 expression by dexamethasone was observed in male liver and no significant induction of CYP3A9 mRNA was observed in female liver or in the brains. These results suggest that estrogen may play an important role in the female specific expression of the CYP3A9 gene and that CYP3A9 gene expression is regulated differently from other CYP3A isozymes. ^ P450 3A9 recombinant protein was expressed in E. coli using the pCWOri+ expression vector and the MALLLAVF amino terminal sequence modification. This construct gave a high level of expression (130 nmol P450 3A9/liter culture) and the recombinant protein of the modified P450 3A9 was purified to electrophoretic homogeneity (10.1 nmol P450/mg protein) from solubilized fractions using two chromatographic steps. The purified P450 3A9 protein was active towards the metabolism of many clinically important drugs such as imipramine, erythromycin, benzphetamine, ethylmorphine, chlorzoxazone, cyclosporine, rapamycin, etc. in a reconstituted system containing lipid and rat NADPH-P450 reductase. Although P450 3A9 was active towards the catabolism of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and 17β-estradiol, P450 3A9 preferentially catalyzes the metabolism of progesterone to form four different hydroxylated products. Optimal reconstitution conditions for P450 3A9 activities required a lipid mixture and GSH. The possible mechanisms of the stimulatory effects of GSH on P450 3A9 activities are discussed. Sexually dimorphic expression of P450 3A9 in the brain and its involvement in many neuroactive drugs as well as neurosteroids suggest the possible role of P450 3A9 in some mental disorders and brain functions. ^
Resumo:
The aim of the present study was to investigate the effects of the androgenic endocrine disruptor 17β-trenbolone on the sexual development of zebrafish (Danio rerio) with special emphasis on the question of whether adverse outcomes of developmental exposure are reversible or persistent. An exposure scenario including a recovery phase was chosen to assess the potential reversibility of androgenic effects. Zebrafish were exposed to environmentally relevant concentrations of 17β-trenbolone (1 ng/L-30 ng/L) from fertilization until completion of gonad sexual differentiation (60 d posthatch). Thereafter, exposure was either followed by 40 d of recovery in clean water or continued until 100 d posthatch, the age when zebrafish start being able to reproduce. Fish exposed for 100 d to 10 ng/L or 30 ng/L 17β-trenbolone were masculinized at different biological effect levels, as evidenced from a concentration-dependent shift of the sex ratio toward males as well as a significantly increased maturity of testes. Gonad morphological masculinization occurred in parallel with decreased vitellogenin concentrations in both sexes. Changes of brain aromatase (cyp19b) mRNA expression showed no consistent trend with respect to either exposure duration or concentration. Gonad morphological masculinization as well as the decrease of vitellogenin persisted after depuration over 40 d in clean water. This lack of recovery suggests that androgenic effects on sexual development of zebrafish are irreversible.
Resumo:
The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1-10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish.