983 resultados para brain level
Resumo:
Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved
Resumo:
The technique of polymerase chain reaction (PCR) differential display was used to detect alterations in gene expression after chronic alcohol administration. Male Wistar rats were treated with ethanol vapor for 14 days. The cDNA generated from mRNA isolated from the hippocampi of ethanol-treated and control animals was compared by PCR differential display. A differentially expressed cDNA fragment was used to screen mRNA samples by Northern analysis. The level of a mRNA was significantly elevated (x 2.5) in the hippocampus, but not the cortex of alcohol-treated rats up to 48 hr after withdrawal. Sequence analysis of the cDNA fragment revealed an almost perfect homology to rat mitochondrial NADH dehydrogenase subunit 4 mRNA. The selective induction of this mRNA in alcohol-treated rat brain areas suggests altered metabolic processes and possible dysfunction of the mitochondria. The technique of PCR differential display may prove useful in further analysis of gene expression during alcohol dependence and withdrawal.
Resumo:
Several epidemiological studies have linked particulate matter exposure to numerous adverse health effects on the respiratory, cardiovascular, and reproductive systems (Braga et al., 1999; Zanobetti et al., 2000; Anderson et al., 2001; Farhat et al., 2005). More recently, ambient levels of black carbon were associated to impaired cognitive function in children (Suglia et al., 2008), suggesting that the central nervous system (CNS) may be a target of air pollutants. The present study was conducted to (a) determine whether chronic residual oil fly ash (ROFA) exposure promotes behavioral changes and lipid peroxidation in rat brain areas, and (b) determine whether N-acetylcysteine (NAC), a general antioxidant, prevents these effects. Forty-five-day-old male Wistar rats were exposed or not to ROFA by intranasal instillation and were treated or not with NAC (150 mg/kg) ip for 30 days. One day later, rats were submitted to the open field test to evaluate the motor/exploratory activities and emotionality followed by decapitation. Striatum and cerebellum were dissected to determine lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBARS). ROFA instillation induced an increase in lipid peroxidation level in striatum (p = .033) and cerebellum (p = .030), as compared with the control group. NAC treatment blocked these changes. ROFA promoted a decrease in the frequency of peripheral walking (p = .006) and a decrease in exploration (p = .001), which were not blocked by N-acetylcysteine. The present study provides evidence that toxic particles, administered by the respiratory route, induce oxidative stress in structures of the central nervous system, as well as behavioral alterations. The administration of NAC reduces lipid peroxidation at the striatum and cerebellum levels, but does not influence behavioral disturbances.
Resumo:
Background/Aims: Abnormal inflammatory response has been associated to the pathogenesis of Alzheimer`s disease (AD) and may be a marker of an ongoing neurodegenerative process. The aim of this study was to evaluate the serum levels of interleukin-1 beta (IL-1 beta) in patients with mild cognitive impairment (MCI) and AD. Methods: One hundred and sixty-three older adults ( 58 with mild to moderate AD, 74 with MCI and 31 healthy controls) were recruited for this study. Serum IL-1 beta levels were measured by ELISA. Patients with MCI were subcategorized in single-domain amnestic (aMCI), nonamnestic (naMCI), and multiple-domain (mdMCI) subtypes. Results: Patients with AD and MCI ( all subtypes) had a significant increase in serum IL-1 beta levels as compared to controls (p = 0.03). Patients with mdMCI had serum IL-1 beta levels comparable to those with AD, and significantly higher than those observed in aMCI and naMCI ( p = 0.02). Discussion: The present study provides evidence that inflammatory mechanisms, represented by elevated IL-1 beta, are observed in patients with MCI, specifically in those with impairment in multiple cognitive domains. As these patients are at higher risk of conversion to dementia, we propose that an increased serum IL-1 beta level is a stage marker of the ongoing brain neurodegeneration in the continuum between normal ageing and AD. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.
Resumo:
Background and Purpose-Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. Methods-Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary and supplementary motor areas of both hemispheres. Statistical maps were obtained by the conventional General Linear Model and by a parametric General Linear Model. Results-Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both primary and supplementary motor areas was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional General Linear Model analysis failed to detect brain activation during movement of the paretic hand. However, the proposed parametric General Linear Model corrected the misdetection problem and showed robust activation in both primary and supplementary motor areas. Conclusions-The use of data analysis tools that are built on the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in patients with stroke. The present data urge the use of caution when relying on the BOLD response as a marker of brain reorganization in patients with stroke. (Stroke. 2010; 41:1921-1926.)
Resumo:
Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Outcome after traumatic brain injury (TBI) is characterized by a high degree of variability which has often been difficult to capture in traditional outcome studies. The purpose of this study was to describe patterns of community integration 2-5 years after TBI. Participants were 208 patients admitted to a Brain Injury Rehabilitation Unit between 1991-1995 in Brisbane, Australia. The design comprised retrospective data collection and questionnaire follow-up by mail. Mean follow-up was 3.5 years. Demographic, injury severity and functional status variables were retrieved from hospital records. Community integration was assessed using the Community Integration Questionnaire (CIQ), and vocational status measured by a self administered questionnaire. Data was analysed using cluster analysis which divided the data into meaningful subsets. Based on the CIQ subscale scores of home, social and productive integration, a three cluster solution was selected, with groups labelled as working (n = 78), balanced (n = 46) and poorly integrated (n = 84). Although 38% of the sample returned to a high level of productive activity and 22% achieved a balanced lifestyle, overall community integration was poor for the remainder. This poorly integrated group had more severe injury characterized by longer periods of acute care and post-traumatic amnesia (PTA) and greater functional disability on discharge. These findings have implications for service delivery prior to and during the process of reintegration after brain injury.
Resumo:
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory, The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee,The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes,The level of expression varies within all three neuropiles.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [H-3] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues. (C) 2002 Wiley-Liss, Inc.
Resumo:
The N-methyl-D-aspartate (NMDA)-selective subtype of ionotropic glutamate receptor is of importance in neuronal differentiation and synapse consolidation, activity-dependent forms of synaptic plasticity, and excitatory amino acid-mediated neuronal toxicity [Neurosci. Res. Program, Bull. 19 (1981) 1; Lab. Invest. 68 (1993) 372]. NMDA receptors exist in vivo as tetrameric or pentameric complexes comprising proteins from two families of homologous subunits, designated NR1 and NR2(A-D) [Biochem. Biophys. Res. Commun. 185 (1992) 826]. The gene coding for the human NR1 subunit (hNR1) is composed of 21 exons, three of which (4, 20 and 21) can be differentially spliced to generate a total of eight distinct subunit variants. We detail here a competitive RT-PCR (cRT-PCR) protocol to quantify endogenous levels of hNR1 splice variants in autopsied human brain. Quantitation of each hNR1 splice variant is performed using standard curve methodology in which a known amount of synthetic ribonucleic acid competitor (internal standard) is co-amplified against total RNA. This method can be used for the quantitation of hNR1 mRNA levels in response to acute or chronic disease states, in particular in the glutamatergic-associated neuronal loss observed in Alzheimer's disease [J. Neurochem. 78 (2001) 175]. Furthermore, alterations in hNR1 mRNA expression may be reflected at the translational level, resulting in functional changes in the NMDA receptor. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Pesticide exposure during brain development could represent an important risk factor for the onset of neurodegenerative diseases. Previous studies investigated the effect of permethrin (PERM) administered at 34 mg/kg, a dose close to the no observable adverse effect level (NOAEL) from post natal day (PND) 6 to PND 21 in rats. Despite the PERM dose did not elicited overt signs of toxicity (i.e. normal body weight gain curve), it was able to induce striatal neurodegeneration (dopamine and Nurr1 reduction, and lipid peroxidation increase). The present study was designed to characterize the cognitive deficits in the current animal model. When during late adulthood PERM treated rats were tested for spatial working memory performances in a T-maze-rewarded alternation task they took longer to choose for the correct arm in comparison to age matched controls. No differences between groups were found in anxiety-like state, locomotor activity, feeding behavior and spatial orientation task. Our findings showing a selective effect of PERM treatment on the T-maze task point to an involvement of frontal cortico-striatal circuitry rather than to a role for the hippocampus. The predominant disturbances concern the dopamine (DA) depletion in the striatum and, the serotonin (5-HT) and noradrenaline (NE) unbalance together with a hypometabolic state in the medial prefrontal cortex area. In the hippocampus, an increase of NE and a decrease of DA were observed in PERM treated rats as compared to controls. The concentration of the most representative marker for pyrethroid exposure (3-phenoxybenzoic acid) measured in the urine of rodents 12 h after the last treatment was 41.50 µ/L and it was completely eliminated after 96 h.
Resumo:
Based on the report for the “Project III” unit of the PhD programme on Technology Assessment under the supervision of Prof. António B. Moniz. This report was discussed also at the 2nd Winter School on Technology Assessment held at Universidade Nova de Lisboa, Caparica Campus, Portugal on December 2011.