50 resultados para bouncing
Resumo:
A diffraction mechanism is proposed for the capture, multiple bouncing and final escape of a fast ion (keV) impinging on the surface of a polarizable material at grazing incidence. Capture and escape are effected by elastic quantum diffraction consisting of the exchange of a parallel surface wave vector G= 2p/ a between the ion parallel momentum and the surface periodic potential of period a. Diffraction- assisted capture becomes possible for glancing angles F smaller than a critical value given by Fc 2- 2./ a-| Vim|/ E, where E is the kinetic energy of the ion,. = h/ Mv its de Broglie wavelength and Vim its average electronic image potential at the distance from the surface where diffraction takes place. For F< Fc, the ion can fall into a selected capture state in the quasi- continuous spectrum of its image potential and execute one or several ricochets before being released by the time reversed diffraction process. The capture, ricochet and escape are accompanied by a large, periodic energy loss of several tens of eV in the forward motion caused by the coherent emission of a giant number of quanta h. of Fuchs- Kliewer surface phonons characteristic of the polar material. An analytical calculation of the energy loss spectrum, based on the proposed diffraction process and using a model ion-phonon coupling developed earlier (Lucas et al 2013 J. Phys.: Condens. Matter 25 355009), is presented, which fully explains the experimental spectrum of Villette et al (2000 Phys. Rev. Lett. 85 3137) for Ne+ ions ricocheting on a LiF(001) surface.
Resumo:
From a hybrid systems point of view, we provide a modeling framework and a trajectory tracking control design methodology for juggling systems. We present the main ideas and concepts in a one degree-of-freedom juggler, which consists of a ball bouncing on an actuated robot. We design a hybrid control strategy that, with only information of the ball's state at impacts, controls the ball to track a reference rhythmic pattern with arbitrary precision. We extend this hybrid control strategy to the case of juggling multiple balls with different rhythmic patterns. Simulation results for juggling of one and three balls with a single actuated robot are presented. © 2007 IEEE.
Resumo:
Rockfall is a geological evolution process involving detachment of blocks or boulders from a slope face, then their free falls, bouncing, rolling or sliding, and finally deposition near the toe of the slope. Many facts indicate that the rockfall can cause hazards to peoples, and it can be regarded as a geological hazard. A rockfall event may only involve a boulder or rock, and also several ones. When there are peoples, buildings, or other man-made establishments within the scope of rockfall trajectory, losses will be possibly induced in tenns of human lives or damages to these facilities. Researches into mechanism, kinematics, dynamics, hazard assessment, risk analysis, and mitigation measures of rockfalls are extremely necessary and important. Occurrence of rockfall is controlled by a lot of conditions, mainly including topographical, geomorphic, geological ones and triggering factors. The rockfall especially in mountainous areas, has different origins, and occurs to be frequent, unexpected, uncertain, in groups, periodic and sectional. The characterization and classification of the rockfalls not only increase knowledge about rockfall mechanism, but also can instruct mitigation of the hazards. In addition, stability of potential rockfalls have various sensitivity to different triggering factors and changes of geometrical conditions. Through theoretical analyses, laboratory experiments and field tests, the author presents some back-analysis methods for friction coefficients of sliding and rolling, and restitution coefficients. The used input data can be obtained economically and accurately in the field. Through deep studies on hazard assessment methods and analysis of factors influencing rockfall hazard, this paper presents a new assessment methodology consisting of preliminary assessment and detailed one. From the application in a 430 km long stretch of the Highway, which is located between Paksho and Nyingtri in Tibet, the methodology can be applicable for the rockfall hazard assessment in complex and difficult terrains. In addition, risk analyses along the stretch are conducted by computing the probability of encountering rockfalls and life losses resulting from rockfall impacts. Rockfall hazards may be mitigated by avoiding hazardous areas, clearness of dangerous rocks, reinforcement, obstructing the rockfalls, leading the rockfalls, warning and monitoring for rockfalls, etc. Seen from present remedial level of rockfall hazards, different mitigation measures, economical and effective buffering units, monitoring tecliniques and consciousness of environmental protection for rockfall mitigations should be further developed.
Resumo:
Nonlinear phenomena play an essential role in the sound production process of many musical instruments. A common source of these effects is object collision, the numerical simulation of which is known to give rise to stability
issues. This paper presents a method to construct numerical schemes that conserve the total energy in simulations of one-mass systems involving collisions, with no conditions imposed on any of the physical or numerical parameters.
This facilitates the adaptation of numerical models to experimental data, and allows a more free parameter adjustment in sound synthesis explorations. The energy preservedness of the proposed method is tested and demonstrated though several examples, including a bouncing ball and a non-linear oscillator, and implications regarding the wider applicability are discussed.
Resumo:
A report provided the initial findings from a research project that examined the resilience of households in Northern Ireland. Drawing on baseline survey data and qualitative interviews with households across four neighbourhoods, it outlined a range of challenges and the strategies used by households to 'get by'. The report said that, for these households, resilience was not about 'bouncing back', 'flourishing', or 'thriving' in the face of adversity, but was about not being overcome, 'getting-by', enduring, surviving, just 'getting on with things', and 'keeping their heads above the water'. The report noted the susceptibility of households to future stressors, such as welfare reform, especially those on means-tested benefits or with long-term illness or disability. Place, and relationships with family and friends, appeared to be important for resilience and future work would investigate this further. The report highlighted issues around the measurement of resilience and noted the importance of qualitative work.
Resumo:
The present study addresses three methodological questions that have been ignored in previous research on EEG indices of the human mirror neuron system (hMNS), particularly in regard to autistic individuals. The first question regards how to elicit the EEG indexed hMNS during movement observation: Is hMNS activation best elicited using long stimulus presentations or multiple short repetitions? The second question regards what EEG sensorimotor frequency bands reflect sensorimotor reactivity during hand movement observation? The third question regards how widespread is the EEG reactivity over the sensorimotor cortex during movement observation? The present study explored sensorimotor alpha and low beta reactivity during hand movement versus static hand or bouncing balls observation and compared two experimental protocols (long exposure vs. multiple repetitions) in the same participants. Results using the multiple repetitions protocol indicated a greater low beta desynchronisation over the sensorimotor cortex during hand movement compared to static hand and bouncing balls observation. This result was not achieved using the long exposure protocol. Therefore, the present study suggests that the multiple repetitions protocol is a more robust protocol to use when exploring the sensorimotor reactivity induced by hand action observation. In addition, sensorimotor low beta desynchronisation was differently modulated during hand movement, static hand and bouncing balls observation (non-biological motion) while it was not the case for sensorimotor alpha and that suggest that low beta may be a more sensitive index of hMNS activation during biological motion observation. In conclusion the present study indicates that sensorimotor reactivity of low beta during hand movement observation was found to be more widespread over the sensorimotor cortex than previously thought.
Resumo:
A 2.5D ray-tracing propagation model is proposed to predict radio loss in indoor environment. Specifically, we opted for the Shooting and Bouncing Rays (SBR) method, together with the Geometrieal Theory of Diffrartion (GTD). Besides the line-of-sight propagation (LOS), we consider that the radio waves may experience reflection, refraction, and diffraction (NLOS). In the Shooting and Bouncing Rays (SBR) method, the transmitter antenna launches a bundle of rays that may or may not reach the receiver. Considering the transmitting antenna as a point, the rays will start to launch from this position and can reach the receiver either directly or after reflections, refractions, diffractions, or even after any combination of the previous effects. To model the environment, a database is built to record geometrical characteristics and information on the constituent materials of the scenario. The database works independently of the simulation program, allowing robustness and flexibility to model other seenarios. Each propagation mechanism is treated separately. In line-of-sight propagation, the main contribution to the received signal comes from the direct ray, while reflected, refracted, and diffracted signal dominate when the line-of-sight is blocked. For this case, the transmitted signal reaches the receiver through more than one path, resulting in a multipath fading. The transmitting channel of a mobile system is simulated by moving either the transmitter or the receiver around the environment. The validity of the method is verified through simulations and measurements. The computed path losses are compared with the measured values at 1.8 GHz ftequency. The results were obtained for the main corridor and room classes adjacent to it. A reasonable agreement is observed. The numerical predictions are also compared with published data at 900 MHz and 2.44 GHz frequencies showing good convergence
Resumo:
The dynamical properties of a classical particle bouncing between two rigid walls, in the presence of a drag force, are studied for the case where one wall is fixed and the other one moves periodically in time. The system is described in terms of a two-dimensional nonlinear map obtained by solution of the relevant differential equations. It is shown that the structure of the KAM curves and the chaotic sea is destroyed as the drag force is introduced. At high energy, the velocity of the particle decreases linearly with increasing iteration number, but with a small superimposed sinusoidal modulation. If the motion passes near enough to a fixed point, the particle approaches it exponentially as the iteration number evolves, with a speed of approach that depends on the strength of the drag force. For a simplified version of the model it is shown that, at low energies corresponding to the region of the chaotic sea in the non-dissipative model, the particle wanders in a chaotic transient that depends on the strength of the drag coefficient. However, the KAM islands survive in the presence of dissipation. It is confirmed that the fixed points and periodic orbits go over smoothly into the orbits of the well-known (non-dissipative) Fermi-Ulam model as the drag force goes to zero.
Resumo:
We investigate numerically the dynamical behavior of a non-ideal mechanical system consisting of a vibrating cart containing a particle which can oscillate back and forth colliding with walls carved in the cart. This system represents an impact damper for controlling high-amplitude vibrations and chaotic motion. The motion of the cart is induced by an in-board non-ideal motor driving an unbalanced rotor. We study the phase space of the cart and the bouncing particle, in particular the intertwined smooth and fractal basin boundary structure. The control of the chaotic motion of the cart due to the particle impacts is also investigated. Our numerical results suggests that impact dampers of small masses are effective to suppress chaos, but they also increase the final-state sensitivity of the system in its phase space. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The phenomenon of Fermi acceleration is addressed for a dissipative bouncing ball model with external stochastic perturbation. It is shown that the introduction of energy dissipation (inelastic collisions of the particle with the moving wall) is a sufficient condition to break down the process of Fermi acceleration. The phase transition from bounded to unbounded energy growth in the limit of vanishing dissipation is characterized.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rare collisions of a classical particle bouncing between two walls are studied. The dynamics is described by a two-dimensional, nonlinear and area-preserving mapping in the variables velocity and time at the instant that the particle collides with the moving wall. The phase space is of mixed type preventing diffusion of the particle to high energy. Successive and therefore rare collisions are shown to have a histogram of frequency which is scaling invariant with respect to the control parameters. The saddle fixed points are studied and shown to be scaling invariant with respect to the control parameters too. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
General Relativity (GR) is one of the greatest scientific achievements of the 20th century along with quantum theory. Despite the elegance and the accordance with experimental tests, these two theories appear to be utterly incompatible at fundamental level. Black holes provide a perfect stage to point out these difficulties. Indeed, classical GR fails to describe Nature at small radii, because nothing prevents quantum mechanics from affecting the high curvature zone, and because classical GR becomes ill-defined at r = 0 anyway. Rovelli and Haggard have recently proposed a scenario where a negative quantum pressure at the Planck scales stops and reverts the gravitational collapse, leading to an effective “bounce” and explosion, thus resolving the central singularity. This scenario, called Black Hole Fireworks, has been proposed in a semiclassical framework. The purpose of this thesis is twofold: - Compute the bouncing time by means of a pure quantum computation based on Loop Quantum Gravity; - Extend the known theory to a more realistic scenario, in which the rotation is taken into account by means of the Newman-Janis Algorithm.
Resumo:
Cognitive functioning is based on binding processes, by which different features and elements of neurocognition are integrated and coordinated. Binding is an essential ingredient of, for instance, Gestalt perception. We have implemented a paradigm of causality perception based on the work of Albert Michotte, in which 2 identical discs move from opposite sides of a monitor, steadily toward, and then past one another. Their coincidence generates an ambiguous percept of either "streaming" or "bouncing," which the subjects (34 schizophrenia spectrum patients and 34 controls with mean age 27.9 y) were instructed to report. The latter perception is a marker of the binding processes underlying perceived causality (type I binding). In addition to this visual task, acoustic stimuli were presented at different times during the task (150 ms before and after visual coincidence), which can modulate perceived causality. This modulation by intersensory and temporally delayed stimuli is viewed as a different type of binding (type II). We show here, using a mixed-effects hierarchical analysis, that type II binding distinguishes schizophrenia spectrum patients from healthy controls, whereas type I binding does not. Type I binding may even be excessive in some patients, especially those with positive symptoms; Type II binding, however, was generally attenuated in patients. The present findings point to ways in which the disconnection (or Gestalt) hypothesis of schizophrenia can be refined, suggesting more specific markers of neurocognitive functioning and potential targets of treatment.